STP180N4F6

N-channel 40 V, 2.1 mΩ typ., 120 A STripFET™ F6 Power MOSFET in a TO-220 package

Datasheet - production data

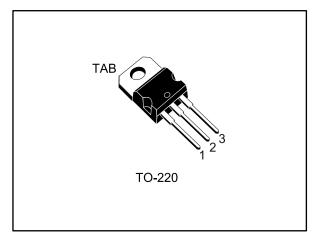
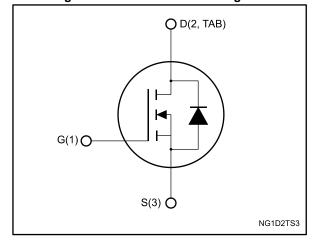



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	ID	Ртот
STP180N4F6	40 V	2.7 mΩ	120 A	190 W

- Very low on-resistance
- Very low gate charge
- High avalanche ruggedness
- Low gate drive power loss

Applications

- Switching applications
- Power tools

Description

This device is an N-channel Power MOSFET developed using the STripFET $^{\text{TM}}$ F6 technology with a new trench gate structure. The resulting Power MOSFET exhibits very low $R_{\text{DS(on)}}$ in all packages.

Table 1: Device summary

Order code	Marking	Package	Packing
STP180N4F6	180N4F6	TO-220	Tube

Contents STP180N4F6

Contents

1	Electrical ratings			
2	Electric	cal characteristics	4	
	2.1	Electrical characteristics (curves)	6	
3	Test cir	·cuits	8	
4	Packag	e information	9	
	4.1	TO-220 type A package information	10	
5	Revisio	n history	12	

STP180N4F6 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	40	V
V _{GS}	Gate-source voltage	±20	V
Ip ⁽¹⁾	Drain current (continuous) at T _{case} = 25 °C	120	^
ID ^(*)	Drain current (continuous) at T _{case} = 100 °C	120	Α
I _{DM} ⁽¹⁾⁽²⁾	Drain current (pulsed)	480	Α
Ртот	Total dissipation at T _{case} = 25 °C	190	W
T _{stg}	Storage temperature range	-55 to 175	00
Tj	T _j Operating junction temperature range		°C

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	0.78	
R _{thj-amb}	Thermal resistance junction-amb	62.5 °C/	

⁽¹⁾ Limited by package.

 $[\]ensuremath{^{(2)}}\mbox{Pulse}$ width limited by safe operating area.

Electrical characteristics STP180N4F6

2 Electrical characteristics

(T_{case} = 25 °C unless otherwise specified)

Table 4: Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	40			V
	Zoro goto voltago drain	$V_{GS} = 0 \text{ V}, V_{DS} = 40 \text{ V}$			1	
IDSS	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 40 \text{ V},$ $T_{case} = 125 \text{ °C}^{(1)}$			100	μΑ
Igss	Gate-body leakage current	V _{DS} = 0 V, V _{GS} = ±20 V			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	3		4.5	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 60 A		2.1	2.7	mΩ

Notes:

Table 5: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		ı	7735	ı	
Coss	Output capacitance	V _{DS} = 25 V, f = 1 MHz, V _{GS} = 0 V	-	745	-	pF
C _{rss}	Reverse transfer capacitance	VBS = 20 V, 1 = 1 Winz, VGS = 0 V	1	560	1	Pi
Q_g	Total gate charge	$V_{DD} = 20 \text{ V}, I_D = 120 \text{ A},$	ı	130	ı	
Qgs	Gate-source charge	V _{GS} = 10 V (see <i>Figure 14: "Test</i>	-	36	ı	nC
Q_{gd}	Gate-drain charge	circuit for gate charge behavior")	-	42	-	

Table 6: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 20 \text{ V}, I_D = 60 \text{ A R}_G = 4.7 \Omega,$	1	24	-	
tr	Rise time	V _{GS} = 10 V (see Figure 13: "Test circuit for resistive load switching	-	150	-	
t _{d(off)}	Turn-off delay time	times" and Figure 18: "Switching	-	106	-	ns
t _f	Fall time	time waveform")	-	57	-	

 $[\]ensuremath{^{(1)}}\mbox{Defined}$ by design, not subject to production test.

Table 7: Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD} ⁽¹⁾	Source-drain current		-		120	Α
I _{SDM} ⁽²⁾	Source-drain current (pulsed)		-		480	Α
V _{SD} ⁽²⁾	Forward on voltage	V _{GS} = 0 V, I _{SD} = 120 A	ı		1.3	V
t _{rr}	Reverse recovery time	I _{SD} = 120 A, di/dt = 100 A/μs,	ı	36		ns
Qrr	Reverse recovery charge	V _{DD} = 32 V (see Figure 15: "Test circuit for inductive load	-	40		nC
I _{RRM}	Reverse recovery current	switching and diode recovery times")	-	2.3		Α

Notes:

⁽¹⁾ Limited by package.

 $^{^{(2)}}$ Pulse test: pulse duration = 300 $\mu s,$ duty cycle 1.5%.

2.1 Electrical characteristics (curves)

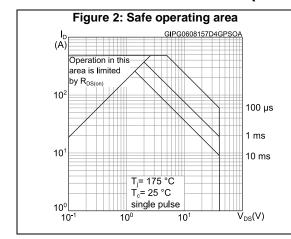


Figure 3: Thermal impedance K
GIPG060815704GPZTH $\delta = 0.5$ $\delta = 0.2$ $\delta = 0.02$ $\delta = 0.02$ $\delta = 0.01$ Single pulse $\delta = 0.02$ $\delta = 0.01$ $\delta = 0.02$ $\delta = 0.01$ $\delta = 0.02$ $\delta = 0.02$ $\delta = 0.01$ $\delta = 0.02$ $\delta = 0.02$ $\delta = 0.01$ $\delta = 0.02$ $\delta = 0.02$ $\delta = 0.02$ $\delta = 0.03$ $\delta = 0.04$ $\delta = 0.02$ $\delta = 0.04$ $\delta = 0.05$ $\delta = 0.02$ $\delta = 0.03$ $\delta = 0.04$ $\delta = 0.05$ $\delta = 0.05$

Figure 4: Output characteristics

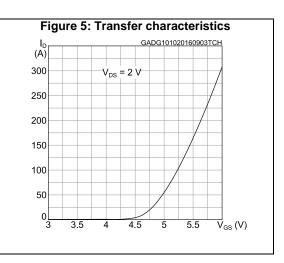
(A) V_{GS}= 7, 8, 9, 10 V

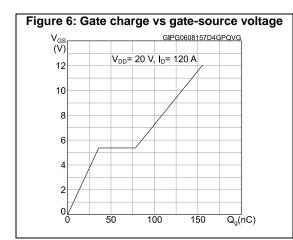
300

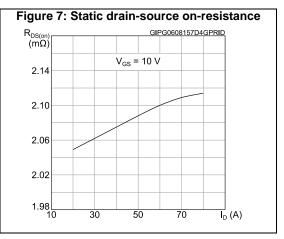
V_{GS}= 6 V

250

150


100


V_{GS}= 5 V


50

0

1 2 3 4 V_{DS}(V)

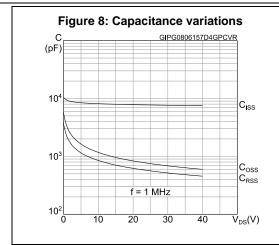
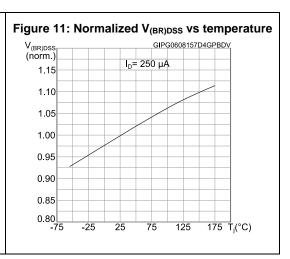


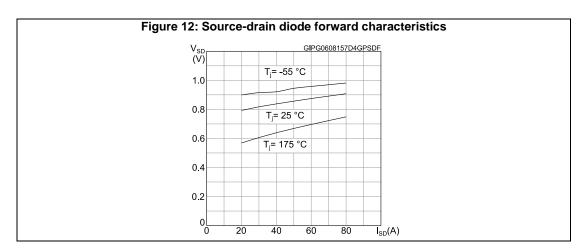
Figure 9: Normalized gate threshold voltage vs temperature

V_{GS(th)}
(norm.)

1.2

1.0


0.8


0.6

0.4

0.2

0.75
-25
25
75
125
175 T_j(°C)

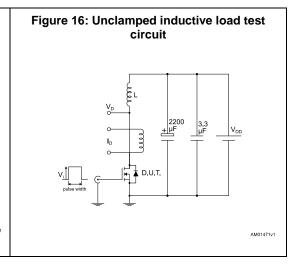
Test circuits STP180N4F6

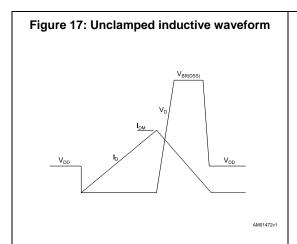
3 Test circuits

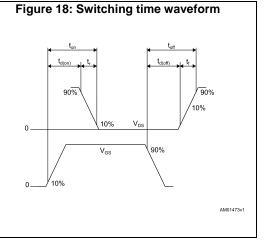
Figure 13: Test circuit for resistive load switching times

Figure 14: Test circuit for gate charge behavior

12 V 47 KΩ 100 Ω D.U.T.


12 V 47 KΩ VGD


14 V CONST 100 Ω D.U.T.


15 V CONST 100 Ω VGD

16 CONST 100 Ω VGD

AM01469v1

STP180N4F6 Package information

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 TO-220 type A package information

Figure 19: TO-220 type A package outline

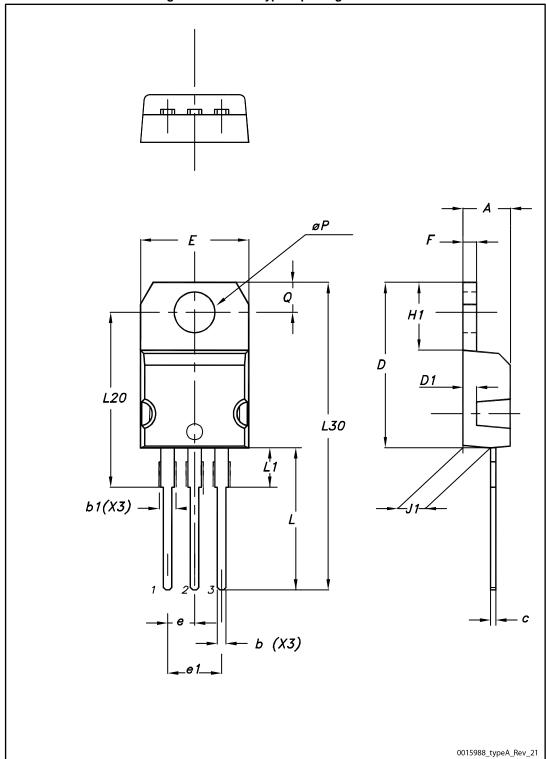


Table 8: TO-220 type A mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
Α	4.40		4.60
b	0.61		0.88
b1	1.14		1.55
С	0.48		0.70
D	15.25		15.75
D1		1.27	
E	10.00		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13.00		14.00
L1	3.50		3.93
L20		16.40	
L30		28.90	
øΡ	3.75		3.85
Q	2.65		2.95

Revision history STP180N4F6

5 Revision history

Table 9: Document revision history

Date	Revision	Changes
07-Aug-2015	1	First release.
11-Oct-2016	2	Datasheet promoted from preliminary to production data. Changed Figure 5: "Transfer characteristics". Minor text changes.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

