STL18N60M2

N-channel 600 V, 0.278 Ω typ., 9 A MDmesh™ M2 Power MOSFET in a PowerFLAT™ 5x6 HV package

Datasheet - production data

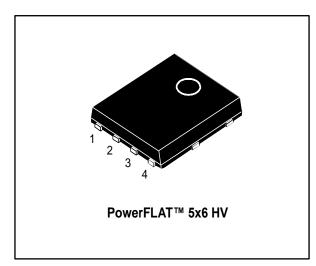
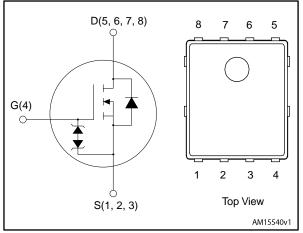



Figure 1: Internal schematic diagram

Features

Order code	V _{DS} @ T _{Jmax}	s @ T _{Jmax} R _{DS(on)} max.	
STL18N60M2	650 V	0.308 Ω	9 A

- Extremely low gate charge
- Excellent output capacitance (C_{OSS}) profile
- 100% avalanche tested
- Zener-protected

Applications

Switching applications

Description

This device is an N-channel Power MOSFET developed using MDmesh™ M2 technology. Thanks to its strip layout and an improved vertical structure, the device exhibits low on-resistance and optimized switching characteristics, rendering it suitable for the most demanding high efficiency converters.

Table 1: Device summary

Order code	Marking	Package	Packing
STL18N60M2	18N60M2	PowerFLAT™ 5x6 HV	Tape and reel

Contents STL18N60M2

Contents

1	Electric	eal ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	PowerFLAT™ 5x6 HV package information	10
	4.2	PowerFLAT™ 5x6 packing information	12
5	Revisio	n history	14

STL18N60M2 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
Vgs	Gate-source voltage	± 25	V
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	9	Α
I _D ⁽¹⁾	Drain current (continuous) at T _C = 100 °C	5.5	Α
I _{DM} ⁽²⁾	Drain current (pulsed)	36	Α
P _{TOT} ⁽²⁾	Total dissipation at $T_C = 25$ °C	57	W
I _{AR}	Avalanche current, repetitive or notrepetitive (pulse width limited by T_i max)	2	Α
Eas	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	135	mJ
dv/dt ⁽³⁾	Peak diode recovery voltage slope	15	V/ns
dv/dt ⁽⁴⁾	MOSFET dv/dt ruggedness	50	V/ns
T _{stg}	Storage temperature range	FF to 150	°C
Tj	Operating junction temperature range	- 55 to 150	

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	2.2	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb	59	°C/W

Notes:

⁽¹⁾The value is limited by package.

 $^{^{(2)}}$ Pulse width limited by safe operating area.

 $^{^{(3)}}I_{SD} \leq 9 \text{ A, di/dt} \leq 400 \text{ A/}\mu\text{s; } V_{DS(peak)} \leq V_{(BR)DSS}, \ V_{DD} = \ 400 \text{ V}.$

 $^{^{(4)}}V_{DS} \le 480 \text{ V}.$

⁽¹⁾When mounted on 1inch² FR-4 board, 2 oz Cu.

Electrical characteristics STL18N60M2

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Table 4: On/off states

Symbol	Parameter Test conditions		Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	600			٧
	Zoro goto voltago droin	V _{GS} = 0 V, V _{DS} = 600 V			1	μΑ
I _{DSS}	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 600 \text{ V},$ $T_{C} = 125 \text{ °C}$ (1)			100	μΑ
Igss	Gate-body leakage current	V _{DS} = 0 V, V _{GS} = ±25 V			10	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 4.5 A		0.278	0.308	Ω

Notes:

Table 5: Dynamic

Symbol	Parameter	neter Test conditions		Тур.	Max.	Unit
Ciss	Input capacitance		-	791	1	pF
Coss	Output capacitance	$V_{DS} = 100 \text{ V}, f = 1 \text{ MHz},$	-	40	ı	pF
Crss	Reverse transfer capacitance	$V_{GS} = 0 V$		1.3	-	pF
Coss eq. (1)	Output equivalent capacitance	V _{DS} = 0 V to 480 V, V _{GS} = 0 V	1	164.5	ı	pF
R _G	Intrinsic gate resistance	f = 1 MHz, I _D = 0 A	-	5.6	ı	Ω
Qg	Total gate charge	$V_{DD} = 480 \text{ V}, I_D = 13 \text{ A},$	-	21.5	ı	nC
Q_{gs}	Gate-source charge	V _{GS} = 0 to 10 V	-	3.2	ı	nC
Q_{gd}	Gate-drain charge	(see Figure 15: "Test circuit for gate charge behavior")	-	11.3	-	nC

Notes:

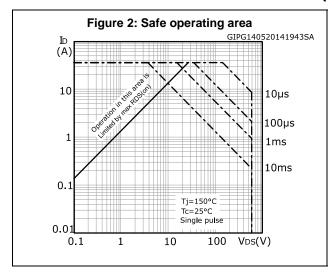
Table 6: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 300 \text{ V}, I_{D} = 6.5 \text{ A}$	ı	12	ı	ns
tr	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$	-	9	-	ns
t _{d(off)}	Turn-off-delay time	(see Figure 14: "Test circuit for resistive load switching times"	-	47	-	ns
t _f	Fall time	and Figure 19: "Switching time waveform")	1	10.6	1	ns

⁽¹⁾ Defined by design, not subject to production test.

 $^{^{(1)}}C_{oss\ eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80 % V_{DS} .

Table 7: Source drain diode


Symbol	Parameter	Test conditions		Тур.	Max.	Unit
I _{SD}	Source-drain current		-		9	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		36	А
V _{SD} ⁽²⁾	Forward on voltage	V _{GS} = 0 V, I _{SD} = 13 A	-		1.6	V
t _{rr}	Reverse recovery time	I _{SD} = 13 A, di/dt = 100 A/μs,	-	305		ns
Qrr	Reverse recovery charge	$V_{DD} = 60 \text{ V}$	-	3.3		μC
I _{RRM}	Reverse recovery current	(see Figure 16: "Test circuit for inductive load switching and diode recovery times")	-	22		Α
t _{rr}	Reverse recovery time	I _{SD} = 13 A, di/dt = 100 A/μs,	-	417		ns
Qrr	Reverse recovery charge	$V_{DD} = 60 \text{ V}, T_j = 150 \text{ °C}$	-	4.6		μC
I _{RRM}	Reverse recovery current	(see Figure 16: "Test circuit for inductive load switching and diode recovery times")	-	22.2		А

Notes:

⁽¹⁾Pulse width is limited by safe operating area.

 $^{^{(2)}\}text{Pulse}$ test: pulse duration = 300 $\mu\text{s},$ duty cycle 1.5 %.

2.1 Electrical characteristics (curves)

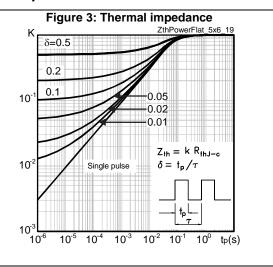
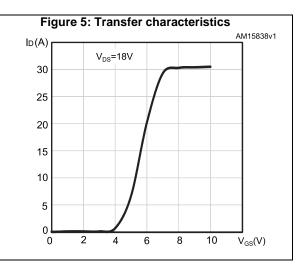
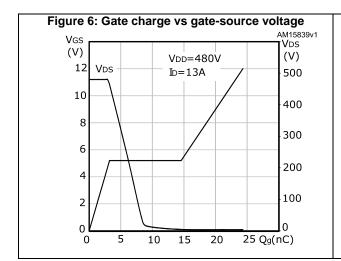
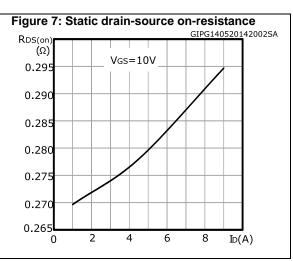





Figure 4: Output characteristics AM15837v1 V_{GS}=7, 8, 9, 10V (A) 30 25 6V 20 15 10 5V 4V 0 5 10 20 $V_{DS}(V)$

STL18N60M2 Electrical characteristics

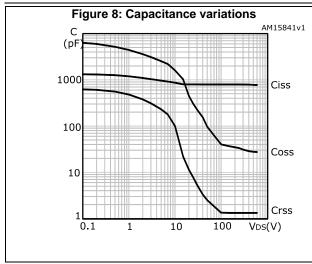


Figure 9: Output capacitance stored energy

Eoss(μJ)

6

5

4

3

2

1

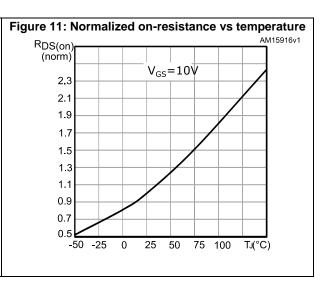
0

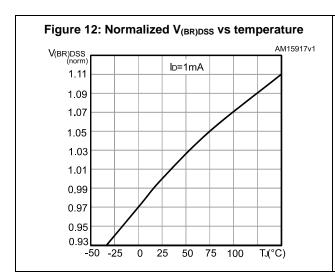
100 200 300 400 500 600 VDs(V)

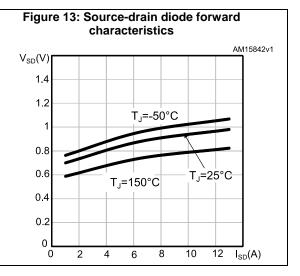
Figure 10: Normalized gate threshold voltage vs temperature

VGS(th)
(norm)

1.10


1.00


0.90


0.80

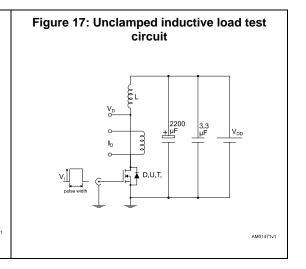
0.70

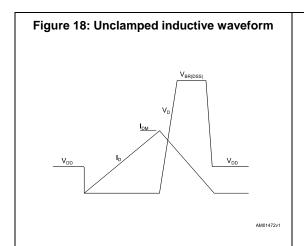
-50 -25 0 25 50 75 100 Ts(°C)

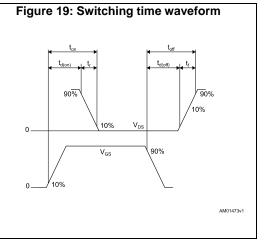
Test circuits STL18N60M2

3 Test circuits

Figure 14: Test circuit for resistive load switching times


Figure 15: Test circuit for gate charge behavior


12 V 47 KΩ 100 NF D.U.T.


VGS 1 KΩ 100 NF D.U.T.

AM01469v1

Figure 16: Test circuit for inductive load switching and diode recovery times

577

STL18N60M2 Package information

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 PowerFLAT™ 5x6 HV package information

Figure 20: PowerFLAT™ 5x6 HV package outline

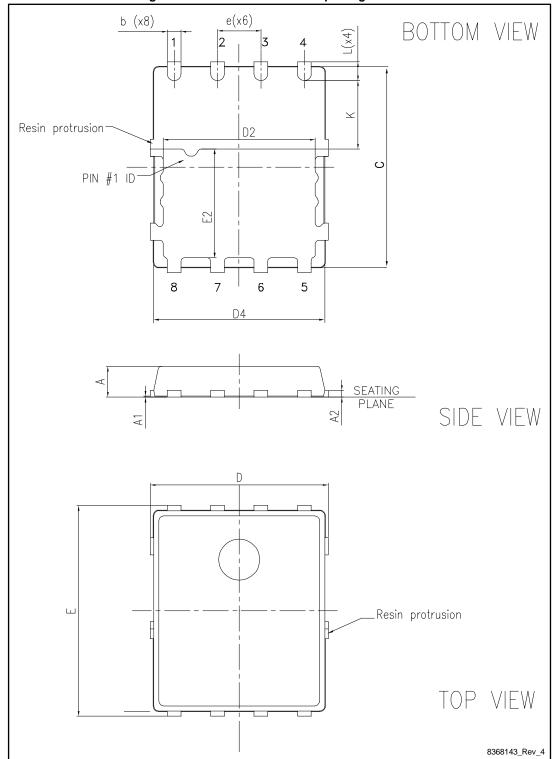
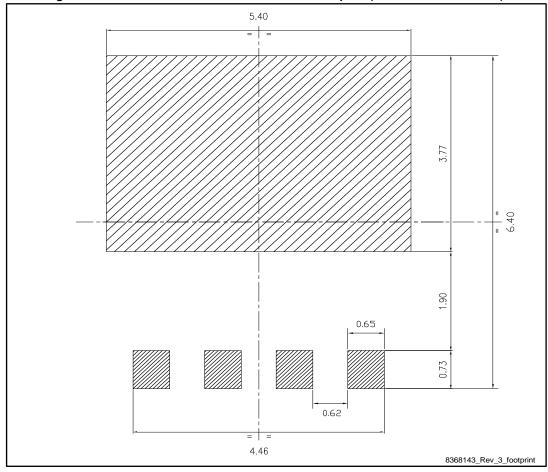



Table 8: PowerFLAT™ 5x6 HV mechanical data

Dim.		mm	
Dilli.	Min.	Тур.	Max.
А	0.80		1.00
A1	0.02		0.05
A2		0.25	
b	0.30		0.50
С	5.8	6	6.1
D	5.10	5.20	5.30
Е	6.05	6.15	6.25
E2	3.10	3.20	3.30
D2	4.30	4.40	4.50
D4	4.8	5	5.1
е		1.27	
L	0.50	0.55	0.60
K	1.90	2.00	2.10

Figure 21: PowerFLAT™ 5x6 HV recommended footprint (dimensions are in mm)

Package information STL18N60M2

4.2 PowerFLAT™ 5x6 packing information

Figure 22: PowerFLAT™ 5x6 tape (dimensions are in mm)

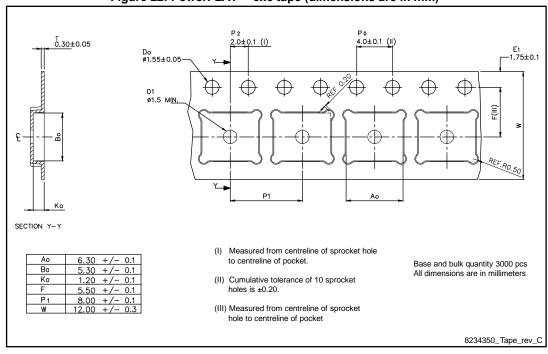


Figure 23: PowerFLAT™ 5x6 package orientation in carrier tape

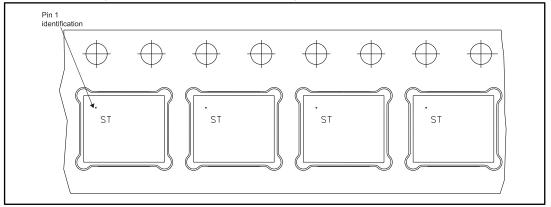


Figure 24: PowerFLAT™ 5x6 reel

PART NO.

R25.00

R25.

Revision history STL18N60M2

5 Revision history

Table 9: Document revision history

Date	Revision	Changes
12-Jun-2014	1	First release.
02-Aug-2017	2	Updated title, features and description in cover page. Updated Table 4: "On/off states", Figure 3: "Thermal impedance", Figure 11: "Normalized on-resistance vs temperature" and Section 4: "Package information". Minor text changes.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

