

PRODUCT/PROCESS CHANGE NOTIFICATION

PCN AMS-AAS/14/8632 Dated 05 Aug 2014

New material set in ST Bouskoura for Signal Conditioning product in Automotive version in SO8 and SO14 packages (Analog and Audio Systems Division)

Table 1.	Change	Implementation	Schedule
----------	--------	----------------	----------

Forecasted implementation date for change	29-Jul-2014
Forecasted availability date of samples for customer	29-Jul-2014
Forecasted date for STMicroelectronics change Qualification Plan results availability	29-Jul-2014
Estimated date of changed product first shipment	04-Nov-2014

Table 2. Change Identification

Product Identification (Product Family/Commercial Product)	See attached product list	
Type of change	Package assembly material change	
Reason for change	To improve quality and standardize industrial process	
Description of the change	Progressing on the activities related to quality improvement and along the plan of rationalizing the manufacturing processes, ST is glad to announce a new material set for Signal Conditioning product for Automotive applications in SO8 and SO14 packages produced in ST Bouskoura. For sample requests, please enter a non-standard sample order and specify the PCN reference in the comment field.	
Change Product Identification	The second level interconnect on labelling will be e3 (instead of e4)	
Manufacturing Location(s)		

Table 3. List of Attachments

Customer Part numbers list	
Qualification Plan results	

Customer Acknowledgement of Receipt	PCN AMS-AAS/14/8632
Please sign and return to STMicroelectronics Sales Office	Dated 05 Aug 2014
Qualification Plan Denied	Name:
Qualification Plan Approved	Title:
	Company:
🗖 Change Denied	Date:
Change Approved	Signature:
Remark	
· · · · · · · · · · · · · · · · · · ·	

Name	Function
Ferri, Simone	Marketing Manager
Onetti, Andrea Mario	Product Manager
Bugnard, Jean-Marc	Q.A. Manager

DOCUMENT APPROVAL

28-July-2014

Report ID 2014-W30 AG-SOAG

Analog, MEMS and Sensors Group Analog and Audio Systems Division (AAS)

New material set in ST Bouskoura for Signal Conditioning products in Automotive version in SO8 and SO14 packages

WHAT:

Progressing on the activities related to quality improvement and along the plan of rationalizing the manufacturing processes, ST is glad to announce a new material set for Signal Conditioning products in Automotive version in SO8 and SO14 packages produced in ST Bouskoura. Please find more information related to material change in the table here below.

Material	Current process	Modified process	Comment
Diffusion location UMC		ST Ang Mo Kio (Singapore)/ UMC	No change
Assembly location	ST Bouskoura	ST Bouskoura	No change
Molding compound	Sumitomo G700K	Sumitomo G630AY	To improve again delamination be- havior and drift of parameter. (CTE more matching silicon, higher Tg, Flexural strength higher and less water absorption)
Die attach	Ablestick 8601-S25 Ablestick 8601-S25		No change
Leadframe	Copper preplated NiPdAu	Copper preplated ag spot	Well known solution in ST Bouskou- ra, implemented on packages like powerSSO
Wire	Copper 1 mil	Copper 1 mil	No change
Plating	NiPdAgAu	Sn	Allowing to solve some coloration issue seen on NiPdAgAu Well known solution in ST Bouskoura, implemented on packages like pow- erSSO

Samples of vehicle test are available now and other samples will be launched upon customer's request. Please submit requests for samples within 30 days of this notification.

WHY:

This material change will contribute to ST's continuous quality product improvemnt and ensure a consistent assembly process through all the SO production lines.

HOW:

The qualification program consists mainly of comparative electrical characterization and reliability tests.

You will find here after the qualification test plan which summarizes the various test methods and conditions that ST uses for this qualification program.

WHEN:

The new material set will be implemented for Signal Conditioning products in Automotive version in Q4'14 in Bouskoura.

Marking and traceability:

Unless otherwise stated by customer's specific requirement, the traceability of the parts assembled with the new material set will be ensured by date code and lot number.

The changes here reported will not affect the electrical, dimensional and thermal parameters keeping unchanged all the information reported on the relevant datasheets. There is -as well- no change in the packing process or in the standard delivery quantities.

Lack of acknowledgement of the PCN within 30 days will constitute acceptance of the change. After acknowledgement, lack of additional response within the 90 day period will constitute acceptance of the change (Jedec Standard No. 46-C).

Shipments may start earlier with the customer's written agreement.

Reliability Report New Halogen free material set SO Automotive

ST Bouskoura

General Information		Locations	
Product Line	0358, 0339, 0912, P93B, 0922, V814 Dual Op amp bipolar, Quad	Wafer fab	ST Singapore, UMC Taiwan,
Product Description	comparator bipolar, Dual op amp CMOS, Logic CMOS, Rail to rail op amp Bicmos, Quad op amp Bicmos,	Assembly plant	ST Bouskoura (Morocco)
P/N	LM2904WYD1, LM2901YD1, TS912IYDT, HCF4093YM013TR, TS922IYDT, LMV824IYDT,	Reliability Lab	ST Grenoble, ST Bouskoura
Product Group	AMS		
Product division	AAS		
Package	SU8/14 Bipolar HC1PA_CMOS metal		
Silicon Process technology	gate. HF2CMOS. HF5CMOS.		
Product Description P/N Product Group Product division Package Silicon Process technology	Dual Op amp bipolar, Quad comparator bipolar, Dual op amp CMOS, Logic CMOS, Rail to rail op amp Bicmos, Quad op amp Bicmos, <i>LM2904WYDT, LM2901YDT,</i> <i>TS912IYDT,</i> <i>HCF4093YM013TR,</i> <i>TS922IYDT, LMV824IYDT,</i> <i>AMS</i> <i>AAS</i> <i>S08/14</i> <i>Bipolar,HC1PA, CMOS metal</i> <i>gate, HF2CMOS, HF5CMOS,</i>	Assembly plant Reliability Lab	ST Bouskoura (Morocco) ST Grenoble, ST Bouskoura

Note: This report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the potential reliability risks during the product life using a set of defined test methods. This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics gen-

This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics general terms and conditions of Sale. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics.

TABLE OF CONTENTS

1	APPL	ICABLE AND REFERENCE DOCUMENTS	. 10
2	GLO	SSARY	. 10
3	RELI	ABILITY EVALUATION OVERVIEW	. 10
	3.1	OBJECTIVES	. 10
	3.2	CONCLUSION	. 10
4	DEVI	CE CHARACTERISTICS	.11
	4.1	DEVICE DESCRIPTION	. 11
	4.2	CONSTRUCTION NOTE	. 17
5	TEST	S RESULTS SUMMARY	. 18
	5.1	TEST VEHICLE	. 18
	5.2	TEST PLAN AND RESULTS SUMMARY	. 19
6	ANNI	EXES	. 23
	6.1	Device details	. 23
	6.2	TESTS DESCRIPTION	. 27
	6.3	Additional results	. 28

<u>1</u> APPLICABLE AND REFERENCE DOCUMENTS

Document reference	Short description
AEC-Q100	Stress test qualification for automotive grade integrated circuits
AEC-Q101 Stress test qualification for automotive grade discrete semiconductors	
JESD47	Stress-Test-Driven Qualification of Integrated Circuits

2 GLOSSARY

DUT	Device Under Test
РСВ	Printed Circuit Board
SS	Sample Size

<u>3 RELIABILITY EVALUATION OVERVIEW</u>

3.1 Objectives

To qualify a new material set for Signal Conditioning products for SO automotive application produced in ST Bouskoura for AMS (Analog Mems & Sensor) group.

3.2 Conclusion

Qualification is based on standard product qualification on which production is running since beginning of 2013 with no major issue.

Qualification Plan requirements have been defined and today partially achieved. It is stressed that reliability tests have to show that the devices behave correctly against environmental tests (no failure). Moreover, the stability of electrical parameters during the accelerated tests have to demonstrate the ruggedness of the products and safe operation, which is consequently expected during their lifetime.

4 DEVICE CHARACTERISTICS

4.1 **Device description**

LM2904WYDT

LM2904W, LM2904AW

Low power dual operational amplifier

Datasheet — production data

Features

- Frequency compensation implemented internally
- Large DC voltage gain: 100 dB
- Wide bandwidth (unity gain): 1.1 MHz (temperature compensated)
- Very low supply current/op (500 µA per channel)
- Low input bias current: 20 nA (temperature compensated)
- Low input offset current: 2 nA
- Input common-mode voltage range includes negative rail
- Differential input voltage range equal to the power supply voltage
- Large output voltage swing 0 V to (V_{CC}⁺ - 1.5 V)
- ESD internal protection: 2 kV
- Automotive qualification

Description

The LM2904W and LM2904AW circuits consist of two independent, high gain operational amplifiers which employ internal frequency compensation and are designed specifically for automotive and industrial control systems. They operate from a single power supply over a wide range of voltages. The low power supply drain is independent of the magnitude of the power supply voltage.

Application areas include transducer amplifiers, DC gain blocks, and all the conventional op-amp circuits which now can be more easily implemented in single power supply systems. For example, these circuits can be directly supplied from standard +5 V which is used in logic systems and easily provides the required interface electronics without requiring any additional power

supply. In linear mode, the input common mode voltage range includes ground. The output voltage can also swing to ground even though operated from a single power supply.

LM2901YDT,

LM2901

Low-power quad voltage comparator

Features

- Wide single supply voltage range or dual supplies for all devices: +2 V to +36 V or ±1 V to ±18 V
- Very low supply current (1.1 mA) independent of supply voltage (1.4 mW/comparator at +5 V)
- Low input bias current: 25 nA typ.
- Low input offset current: ±5 nA typ.
- Input common-mode voltage range includes negative rail
- Low output saturation voltage: 250 mV typ. (I_O = 4 mA)
- Differential input voltage range equal to the supply voltage
- TTL, DTL, ECL, MOS, CMOS compatible outputs

Description

This device consists of four independent precision voltage comparators, which are designed specifically to operate from a single supply over a wide range of voltages. Operation from split power supplies is also possible.

These comparators also have a unique characteristic in that the input common-mode voltage range includes the negative rail even though operated from a single power supply voltage.

P TSSOP14 (Thin shrink small outline package)

Q4 QFN16 3x3 (Plastic micropackage)

TS912IYDT:

TS912, TS912A, TS912B

Rail-to-rail CMOS dual operational amplifier

Features

- Rail-to-rail input and output voltage ranges
- Single (or dual) supply operation from 2.7 to 16 V
- Extremely low input bias current: 1 pA typ.
- Low input offset voltage: 2 mV max.
- Specified for 600 Ω and 100 Ω loads
- Low supply current: 200 μA/amplifier (V_{CC} = 3 V)
- Latch-up immunity
- ESD tolerance: 3 kV
- Spice macromodel included in this specification

Related products

 See TS56x series for better accuracy and smaller packages

Description

The TS912 device is a rail-to-rail CMOS dual operational amplifier designed to operate with a single or dual supply voltage.

The input voltage range V_{icm} includes the two supply rails V_{CC}⁺ and V_{CC}⁻.

The output reaches V_{CC}⁻+30 mV, V_{CC}⁺ -40 mV, with R_L = 10 kΩ and V_{CC}⁻+300 mV, V_{CC}⁺ -400 mV, with R_L = 600 Ω.

This product offers a broad supply voltage operating range from 2.7 to 16 V and a supply current of only 200 μ A/amp. (V_{CC} = 3 V).

Source and sink output current capability is typically 40 mA (at V_{CC} = 3 V), fixed by an internal limitation circuit.

Datasheet - production data

HCF4093YM013TR:

HCF4093

Quad 2-input NAND Schmitt trigger

Datasheet - production data

Features

- Schmitt trigger action on each input with no external components
- Hysteresis voltage typically 0.9 V at V_{DD} = 5 V and 2.3 V at V_{DD} = 10 V
- Noise immunity greater than 50 % of V_{DD} (typ.)
- No limit on input rise and fall times
- Quiescent current specified up to 20 V
- Standardized symmetrical output characteristics
- 5 V, 10 V, and 15 V parametric ratings
- Input leakage current I_I = 100 nA (max.) at V_{DD} = 18 V and T_A = 25 °C
- 100 % tested for quiescent current

ESD performance

- HBM: 2 kV
- MM: 200 V
- CDM: 1 kV

Applications

- Automotive
- Industrial
- Computer
- Consumer

Description

The HCF4093 is a monolithic integrated circuit fabricated in metal oxide semiconductor technology available in the SO14 package.

The HCF4093 consists of four Schmitt trigger circuits. Each circuit function has a 2-input NAND gate with Schmitt trigger action on both inputs. The gate switches at different points for positive and negative going signals. The difference between the positive voltage (V_P) and the negative voltage (V_N) is defined as hysteresis voltage (V_H).

TS922IYDT:

TS922, TS922A

Rail-to-rail, high output current dual operational amplifier

Datasheet - production data

Features

- Rail-to-rail input and output
- Low noise: 9 nV/vHz
- Low distortion
- High output current: 80 mA (able to drive 32 Ω loads)
- High-speed: 4 MHz, 1 V/µs
- Operating from 2.7 to 12 V
- Low input offset voltage: 900 μV max. (TS922A)
- ESD internal protection: 2 kV
- Latch-up immunity
- Macromodel included in this specification
- · Dual version available in Flip-chip package

Applications

- Headphone and servo amplifiers
- · Sound cards, multimedia systems
- Line drivers, actuator drivers
- · Mobile phones and portable equipment
- · Instrumentation with low noise as key factor
- Piezoelectric speaker drivers

Description

TS922 and TS922A devices are rail-to-rail dual BiCMOS operational amplifiers optimized and fully specified for 3 V and 5 V operation. These devices have high output currents which allow low-load impedances to be driven.

Very low noise, low distortion, low offset, and a high output current capability make these devices an excellent choice for high quality, low voltage, or battery operated audio systems.

The devices are stable for capacitive loads up to 500 $\ensuremath{\mathsf{pF}}$.

LMV824IYDT:

LMV82x, LMV82xA

Datasheet - production data

Low power, high accuracy, general-purpose operational amplifier

Features

- Low power consumption: 400 µA max at 5 V
- Low power shutdown mode: 50 nA max
- Low offset voltage: 0.8 mV max at 25°C
- Tiny packages
- Extended temperature range: -40°C to +125°C
- Low supply voltage: 2.5 V 5.5 V
- Gain bandwidth product: 5.5 MHz
- Automotive qualification

Benefits

- Longer lifetime in battery-powered applications
- Higher accuracy without calibration
- Smaller form factor than equivalent competitor devices
- Application performances guaranteed over wide temperature range

Related products

 See TSV85x series for lower power consumption (180 µA max at 5 V)

Applications

- Battery-powered applications
- Portable devices
- Automotive signal conditioning
- Active filtering
- Medical instrumentation

Description

The LMV82x and LMV82xA series of single, dual, and quad operational amplifiers offer low voltage operation with rail-to-rail output swing. They outperform the industry standard LMV321, especially with regard to the gain bandwidth

product (5.5 MHz). The LMV821, LMV822 and LMV824 are offered with standard pinouts.

The LMV820, LMV823, and LMV825 include a power-saving shutdown feature that reduces the supply current to a maximum of 50 nA at 25 $^\circ C.$

The wide temperature range, high ESD tolerance, and automotive grade qualification make them particularly suitable for use in harsh automotive applications.

Table 1. Device summary

	Without shutdown		With shutSdown	
	Standard Vio	Enhanced Vio	Standard Vio	Enhanced Vio
Single	LMV821	LMV821A	LMV820	LMV820A
Dual	LMV822	LMV822A	LMV823	LMV823A
Quad	LMV824	LMV824A	LMV825	LMV825A

4.2 Construction note

	P/N	P/N	P/N	P/N
	LM2904WYDT	LM2901YDT	<i>TS9121YDT</i>	HCF4093YM013TR
Wafer/Die fab. informa-				
	CT Cincon one	CT Cin con one	CT Cinceren	CT Cin son one
water tab manufacturing	ST Singapore	ST Singapore	ST Singapore	ST Singapore
Technology	Bipolar	Binolar	CMOS HC1PA	CMOS metal gate
Die finishing heels eide	PAW SILICON		PAW SILICON	PAW SILICON
Die finisning back side	1280-1210	1270-1270	2620::1090	1474:024
Die size (microns)	1280X1210	15/0x12/0	203081980	14/48924
Bond pad metallization	AlSiCu	AlSiCu	AlSı	AlSi
layers	Nitaida	Nitaida	D VADOV AUTDIDE	D VADOV/MITDIDE
Passivation type	Initride	INITIAE	P-VAPOA/NITRIDE	P-VAPOA/NITRIDE
Wafer Testing (EWS)				
information	CTT Classication	CTT C	OTT CI	OTE Classication
Electrical testing manu-	S1 Singapore	S1 Singapore	S1 Singapore	S1 Singapore
facturing location	4.01.117		4.01.117	4.01.117
Tester	ASLIK	ASLIK	ASLIK	ASLIK
Assembly information				
Assembly site	ST Bouskoura	ST Bouskoura	ST Bouskoura	ST Bouskoura
Package description	SO8	SO14	SO8	SO14
Molding compound	EME G630AY	EME G630AY	EME G630AY	EME G630AY
Frame material	Cu	Cu	Cu	Cu
Die attach process	Epoxy Glue	Epoxy Glue	Epoxy Glue	Epoxy Glue
Die attach material	8601S-25	8601S-25	8601S-25	8601S-25
Wire bonding process	Thermosonic ball	Thermosonic ball	Thermosonic ball	Thermosonic ball
	bonding	bonding	bonding	bonding
Wires bonding mate-	Cu 1 mil	Cu 1 mil	Cu 1 mil	Cu 1 mil
rials/diameters				
Lead finishing process	electroplating	electroplating	electroplating	electroplating
Lead finishing/bump sol-	Matte tin	Matte tin	Matte tin	Matte tin
der material				
Final testing information				
Testing location	ST Bouskoura	ST Bouskoura	ST Bouskoura	ST Bouskoura
Tester	ASL1K	ASL1K	ASL1K	ASL1K

- <u>,</u> –

	P/N TS922IYDT	P/N <i>LMV824IYDT</i>
Wafer/Die fab. informa-		
tion		
Wafer fab manufacturing	ST Singapore	UMC Taiwan
location		
Technology	HF2CMOS	HF5CMOS
Die finishing back side	RAW SILICON	RAW SILICON
Die size (microns)	1720x1190	1092x1322
Bond pad metallization	AlSiCu	AlCu
layers		
Passivation type	P-VAPOX/NITRIDE	USG-PSG-SiON-PIX
Wafer Testing (EWS)		
information		
Electrical testing manu-	ST Singapore	ST Singapore
facturing location		
Tester	ASL1K	ASL1K
Assembly information		
Assembly site	ST Bouskoura	ST Bouskoura
Package description	SO8	SO14
Molding compound	EME G630AY	EME G630AY
Frame material	Cu	Cu
Die attach process	Epoxy Glue	Epoxy Glue
Die attach material	8601S-25	8601S-25
Wire bonding process	Thermosonic ball	Thermosonic ball
	bonding	bonding
Wires bonding mate-	Cu 1 mil	Cu 1 mil
rials/diameters		
Lead finishing process	electroplating	electroplating
Lead finishing/bump sol-	Matte tin	Matte tin
der material		
Final testing information		
Testing location	ST Bouskoura	ST Bouskoura
Tester	ASL1K	ASL1K

5 TESTS RESULTS SUMMARY

5.1 Test vehicle

Lot #	Process/ Package	Product Line	Comments
1	Bipolar/SO8	0358	CZ42304Y
2	Bipolar/SO14	0339	CZ4250CE
3	HC1PA/SO8	0912	
4	CMOSMG/SO14	P93B	CZ4250FPZY
5	HF2CMOS/SO8	0922	CZ42305801
6	HF5CMOS/SO14	V814	CZ42206SZZ

5.2 Test plan and results summary

							Failı	ure/SS		
Test	PC	Std ref.	Conditions	SS	Steps	Lot 1	Lot 2	Lot 3	Lot	Note
						0358	0339	0912	P93B	
	1	1			160 H	0/77	77	77		2 tomm omotornoo toot
UTD	N	JESD22	T: 125%C DIAS		108 H	0/11	77	77		5 temperatures test
пір	IN	A-108	IJ = 125 C, BIAS		1000 H	77	77	77		
					168 H	//	77	//	77	
HTSI	Ν	JESD22	$T_{2} = 150^{\circ}C$		500 H		77		77	
IIISE	11	A-103	1a - 150 C		1000 H		77		77	
Package	Orie	ented Tests			1000 11		,,		,,	
PC		JESD22 A-113	Drying 24 H @ 125°C Store 168 H @ Ta=85°C Rh=85% Over Reflow @ Tpeak=260°C 3 times		Final	PASS				
AC	Y	JESD22 A-102	Pa=2Atm / Ta=121°C		96 H	77	77	77	77	
		IESDOO			100 cy	77	77	77	77	
TC	Y	JESD22	Ta = -65° C to 150° C		200 cy	77	77	77	77	
		A-104			500 cy	77	77	77	77	
		IESD22			168 H	0/77	77	77		Hot and ambient test
THB	Y	A-101	Ta = 85°C, RH = 85%, BIAS		500 H	77	77	77		
A-101		11 101			1000 H	77	77	77		
Other Tes	sts				1	1	1	1		
		AEC Q101-								
ESD	Ν	001,002	CDM			3	3	3	3	
(TD), Y	and 005								
SD	Ν		After ageing 8h and 16h							

			Failure/SS							
Test	PC	Std ref.	Conditions	SS	Steps	Lot 1	Lot 2			Note
					<u> </u>	0922	V814	-		
	1 1					1	1	-	1	
		JESD22			168 H					
HTB	Ν	A-108	Tj = 125°C, BIAS		500 H					
					1000 H					
		IESD22			168 H	77	77			
HTSL	Ν	A-103	$Ta = 150^{\circ}C$		500 H	77	77			
		11105			1000 H	77	77			
Package	Orie	ented Tests								-
РС		JESD22 A-113	Drying 24 H @ 125°C Store 168 H @ Ta=85°C Rh=85% Over Reflow @ Tpeak=260°C 3 times		Final					
AC	Y	JESD22 A-102	Pa=2Atm / Ta=121°C		96 H	77	77			
		IECD22			100 cy	77	77			
TC	Y	JESD22	Ta = -65° C to 150° C		200 cy	77	77			
		A-104			500 cy	77	77			
		IECD22			168 H					
THB	Y	JESD22	Ta = 85°C, RH = 85%, BIAS		500 H					
		A-101			1000 H					
Other Tes	sts									
		AEC Q101-								
ESD	Ν	001,002	CDM		1500V	3	3			
		and 005								
SD	Ν		After ageing 8h and 16h							

- **5**.

For reference, below the reliability assessment made on standard parts.

	P/N TS912IDT	LM393DT	P/N TS924IDT	HCF4060
Wafer/Die fab. informa-	T			
tion				
Wafer fab manufacturing	ST Singapore	ST Singapore	ST Singapore	ST Singapore
location				
Technology	CMOS HC1PA	HBIP40	HF2CMOS	CMOS metal gate
Process family	C1PAHV-2	GHBIP40-A	HFMS520	CMOS MG
Die finishing back side	RAW SILICON	LAPPED SILICON	RAW SILICON	Lapped silicon
Die size (microns)	2630x1980	870x590	1980x2450	1950x1700
Bond pad metallization	AlSi	AlSiCu	AlSiCu	AlSi
layers				
Passivation type	P-VAPOX/NITRIDE	P-VAPOX/NITRIDE	P-VAPOX/NITRIDE	P-VAPOX (Si glass)
Wafer Testing (EWS)				
information				
Electrical testing manu-	ST Singapore	ST Singapore	ST Singapore	ST Singapore
facturing location				
Tester	ASL1K	ASL1K	ASL1K	ASL1K
Assembly information				
Assembly site	ST Bouskoura	ST Bouskoura	ST Bouskoura	ST Bouskoura
Package description	SO8	SO8	SO14	SO16
Molding compound	EME G630AY	EME G630AY	EME G630AY	EME G630AY
Frame material	Cu	Cu	Cu	Cu
Die attach process	Epoxy Glue	Epoxy Glue	Epoxy Glue	Epoxy Glue
Die attach material	8601S-25	8601S-25	8601S-25	8601S-25
Wire bonding process	Thermosonic ball	Thermosonic ball	Thermosonic ball	Thermosonic ball
	bonding	bonding	bonding	bonding
Wires bonding mate-	Cu 1 mil	Cu 1 mil	Cu 1 mil	Cu 1 mil
rials/diameters				
Lead finishing process	electroplating	Electroplating	Electroplating	Electroplating
Lead finishing/bump sol-	Matte tin	Matte tin	Matte tin	Matte tin
der material				
Final testing information				
Testing location	ST Bouskoura	ST Bouskoura	ST Bouskoura	ST Bouskoura
Tester	ASL1K	ASL1K	ASL1K	ASL1K

28-July-2014 Report										012-W23 AG-SO
							Failu	ıre/SS		
Test	PC	Std ref.	Conditions	SS	Steps	Lot 1 0912	Lot 2 0393	Lot 3 0924	Lot P60B	Note
		IESD22			168 H		0/78	0/78	0/77	
HTB	Ν	A-108	$Tj = 125^{\circ}C, BIAS$		500 H		0/78	0/78	0/77	
		11 100			1000 H		78	0/78	0/77	
		IESD22			168 H	0/77	0/77	0/78	0/77	Reliability in Bous-
HTSL	Ν	A-103	$Ta = 150^{\circ}C$		500 H	0/77	0/77	0/78		koura for 0912 and
		11 105			1000 H	0/77	0/77	0/78	0/77	0393
Package	• Orie	ented Tests			T	1	1	1		
РС		JESD22 A-113	Drying 24 H @ 125°C Store 168 H @ Ta=85°C Rh=85% Over Reflow @ Tpeak=260°C 3 times		Final	0/154	0/233	0/234	0/154	
AC	Y	JESD22 A-102	Pa=2Atm / Ta=121°C		96 H	0/77	0/77	0/78	0/77	Reliability in Bous- koura for 0912, P60B and 0393
		IECD22			100 cy	0/77	0/78	0/78	0/77	Reliability in Bous-
TC	Y	JESD22 A_104	Ta = -65° C to 150° C		200 cy	0/77	0/78	0/78	0/77	koura for 0912 and
		A-104			500 cy	0/77	0/78	0/78	0/77	0393
TUD	v	JESD22	To 95% DIL 95% DIAS		168 H		0/78	0/78	1/78*	*reject not linked with assembly.
пр	I	A-101	1a = 85 C, $RH = 85%$, $BIAS$		500 H		0/78	0/78	0/76	
					1000 H		0/78	0/78	0/76	
Other Te	sts				-	-	-	-		
		AEC Q101-	HBM		2KV					
ESD	Ν	001,002	CDM		1500V	0/3	0/3	0/3		
		and 005	MM		150V					
SD	Ν		After ageing 8h and 16h			0/24	0/24	0/24	0/20	

- <mark>/ _</mark>® —

6 ANNEXES

6.1 Device details

6.1.1 Pin connection

LM2904W

LM2901

TS912

28-July-2014

Pin no	Symbol	Name and function
1, 2, 5, 6, 8, 9, 12, 13	A, B, C, D, E, F, G, H	Data inputs
3, 4, 10, 11	J, K, L, M	Data outputs
7	V _{SS}	Negative supply voltage
14	V _{DD}	Positive supply voltage

₹

TS922

LMV824

6.1.2 Block diagram

∕¶®

28-July-2014

∕¶®

HCF4093

6.2 **Tests Description**

Test name	Description	Purpose			
Die Oriented	-				
HTOL High Temperature Operating Life HTB High Temperature Bias	The device is stressed in static or dynamic configuration, approaching the operative max. absolute ratings in terms of junction temperature and bias condition.	To determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices' operating condition in an accelerated way. The typical failure modes are related to, silicon degradation, wire-bonds degradation, oxide faults.			
HTRB High Temperature Reverse Bias HTFB / HTGB High Temperature Forward (Gate) Bias	The device is stressed in static configura- tion, trying to satisfy as much as possible the following conditions: low power dissipation; max. supply voltage compatible with diffu- sion process and internal circuitry limita- tions;	To determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices' operating condition in an accelerated way. To maximize the electrical field across either reverse-biased junctions or dielectric layers, in order to investigate the failure modes linked to mobile contamination, oxide ageing, layout sensitivity to surface effects.			
HTSL High Temperature Storage Life	The device is stored in unbiased condition at the max. temperature allowed by the pack- age materials, sometimes higher than the max. operative temperature.	To investigate the failure mechanisms activated by high temperature, typically wire-bonds sol- der joint ageing, data retention faults, metal stress-voiding.			
ELFR Early Life Failure Rate	The device is stressed in biased conditions at the max junction temperature.	To evaluate the defects inducing failure in early life.			
Package Oriented					
PC Preconditioning	The device is submitted to a typical temper- ature profile used for surface mounting de- vices, after a controlled moisture absorption.	As stand-alone test: to investigate the moisture sensitivity level. As preconditioning before other reliability tests: to verify that the surface mounting stress does not impact on the subsequent reliability performance. The typical failure modes are "pop corn" effect and delamination.			
AC Auto Clave (Pres- sure Pot)	The device is stored in saturated steam, at fixed and controlled conditions of pressure and temperature.	To investigate corrosion phenomena affecting die or package materials, related to chemical contamination and package hermeticity.			
TC Temperature Cy- cling	The device is submitted to cycled tempera- ture excursions, between a hot and a cold chamber in air atmosphere.	To investigate failure modes related to the thermo-mechanical stress induced by the dif- ferent thermal expansion of the materials inter- acting in the die-package system. Typical fail- ure modes are linked to metal displacement, dielectric cracking, molding compound delam- ination, wire-bonds failure, die-attach layer degradation.			

- 🔽 –

Test name	Description	Purpose
TF / IOL Thermal Fatigue / Intermittent Oper- ating Life	The device is submitted to cycled tem- perature excursions generated by power cycles (ON/OFF) at T ambient.	To investigate failure modes related to the thermo-mechanical stress induced by the different thermal expansion of the materi- als interacting in the die-package system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire-bonds fail- ure, die-attach layer degradation.
THB Temperature Humi- dity Bias	The device is biased in static configuration minimizing its internal power dissipation, and stored at controlled conditions of ambi- ent temperature and relative humidity.	To evaluate the package moisture resistance with electrical field applied, both electrolytic and galvanic corrosion are put in evidence.
Other		
ESD Electro Static Dis- charge	The device is submitted to a high voltage peak on all his pins simulating ESD stress according to different simulation models. CBM: Charged Device Model HBM: Human Body Model MM: Machine Model	To classify the device according to his suscep- tibility to damage or degradation by exposure to electrostatic discharge.
LU Latch-Up	The device is submitted to a direct current forced/sunk into the input/output pins. Removing the direct current no change in the supply current must be observed.	To verify the presence of bulk parasitic effect inducing latch-up.

6.3 Additional results

Parameter	0393	0924

5/					28-July-2014			Rej	port ID 20	012-W23 AG-	<u>SO</u>
Bonding strength			Ball Shear (g)	Pull Test (g)				Ball Shear (g)	Pull Test (g)		
	1 64	LSL	19.9	4		4	LSL	19.9	4		
		USL	NA	NA		l	JSL	NA	NA		
	5	Avg	36.84	15.46			Avg	45.11	15.87		
		Мах	42.63	17.03			Мах	49.92	17.07		
	WB1	Min	33.92	12.26		WB1	Min	38.56	13.84		
		stdv	1.25	1.13			stdv	2.66	1.35		
		СРК	4.49	3.38	l		СРК	3.16	2.93		
		47	A 7 E	53° 221	13		69/ 9/	5S EZ	98 748	906 1	
Xray											

28-July-2014

Report ID 2012-W23 AG-SO

R

Parameter	0912			_	P60B					
Bonding strength		Dall	Dull				Ball	Pull	Loop	
		Shoar	Tact				Shear	Test	Height	
		Snear	(a)				(g)	(g)	(µm)	
		(8)	(g)		l	_SL	19.9	4	150	
	LSL	19.9	4			JSL	NA	NA	250	
	USL	NA	NA			Avg	42.3	15.11	173.1	
	Avg	39.15	15.71	-	m	Мах	48.8	16.13	180	
	Max	44.37	17.08		WB	Min	36.6	14. <mark>4</mark> 3	167	
	Min	36.58	13.98			stdv	2.50	0.53	3.70	
	stdy	1.86	0.06	•		СРК	2.99	6.99	2.08	
	Stuv	1.00	0.90			Avg	43.15	15.31	185.2	
	СРК	3.43	4.07		4	Max	46.37	16.94	203	
					WB.	Min	37.18	13.93	175	
						stdv	2.61	0.83	<mark>4.63</mark>	
						СРК	5.19	5.94	2.53	
Xray	A.5	91 EZ	20	Y						
- Xiay	j,			9						

- **S**_® ------

28-July-2014 Report ID 2012-W23 AG-SO

28-July-2014

Electrical comparison:

0922 Automotive								
reference SOSA								
HD								
	I	Mean Compariso	n	С	pk compariso	n		
test parameter	Units	reference	HD	Shift	reference	HD	Ratio	Comment
lcc	mA	1.33	1.35	0.02	9.3	11.0	1.18	OK
Vio	mV	0.51	0.42	-0.09	17.9	21.5	1.20	OK
Vio	mV	0.37	0.39	0.03	11.8	20.9	1.77	OK
lcc	mA	1.14	1.16	0.03	5.9	6.9	1.18	OK
Vio	mV	0.52	0.42	-0.10	10.1	12.2	1.20	OK
Vio	mV	0.40	0.40	0.00	8.7	12.0	1.38	OK
lcc	mA	1.07	1.09	0.02	7.7	9.0	1.17	OK
Vio	mV	0.58	0.48	-0.10	10.1	12.3	1.21	OK
Vio	mV	0.46	0.46	0.00	9.5	12.0	1.27	OK
cmr	dB	90.43	87.78	-2.65	1.35	1.50	1.11	OK
cmr	dB	93.97	86.87	-7.10	1.26	1.53	1.21	OK
SVR	dB	92.10	92.02	-0.08	12.29	13.72	1.12	OK
SVR	dB	91.65	91.89	0.25	6.78	13.19	1.94	OK
Voh	V	2.99	2.99	0.00	4.7	21.0	4.50	OK
Voh	V	2.99	2.99	0.00	4.7	27.2	5.78	OK
Vol	V	0.01	0.01	0.00	11.6	27.3	2.35	OK
Vol	V	0.01	0.01	0.00	13.1	35.1	2.68	OK
SRn	V/uS	1.16	1.25	0.09	5.4	5.4	1.01	OK
SRn	V/uS	1.20	1.27	0.07	6.6	6.5	0.99	OK
SRp	V/uS	1.28	1.35	0.07	6.9	6.4	0.92	OK
SRp	V/uS	1.33	1.37	0.05	8.2	7.6	0.93	OK

		Me	ean Comparis	on		Cpk com	parison	
test	Unit	Old	New	Shift	Old	New	Ratio	Comment
c for one an	mA	0.49	0.50	0.01	1.98	2.74	1.38	
Vio	mV	-0.30	-0.59	-0.29	2.96	3.42	1.15	
Vio	mV	-0.31	-0.73	-0.42	2.94	4.32	1.47	
lcc	uA	0.17	0.17	0.00	2.31	14.79	6.40	
Vio	m∨	-0.44	-0.77	-0.34	2.38	4.14	1.74	
Vio	mV	-0.47	-0.99	-0.52	2.38	4.97	2.09	
c for one an	uA	157.34	158.88	1.54	180.00	193.76	1.08	
lio	pА	0.77	0.98	0.21	13.53	13.89	1.03	
lio	pА	5.61	2.90	-2.71	20.84	36.92	1.77	

	-		Mean Comparison	1	C	pk comparison		
	test parameter	Old	New 68175NT	Shift	Old	New	Ratio	Comment
Limits	0QA 1FT 2WS							
Icc 30V	mA	0.28	0.30	0.02	18.43	22.98	1.25	
Icc 5V	mA	0.24	0.25	0.01	35.08	32.92	0.94	
P101_A1	mV	-0.41	0.07	0.48	6.87	6.17	0.90	
P101_B1	mV	-0.47	-0.28	0.20	4.76	4.74	0.99	
P101_A3	mV	-0.68	-0.29	0.38	6.16	4.59	0.74	CPK>2
P101_B3	mV	-0.71	-0.67	0.05	4.42	3.57	0.81	
P101_A4	mV	0.19	0.56	0.37	6.92	5.60	0.81	
P101_B4	mV	0.13	0.23	0.10	5.15	4.65	0.90	
P101_A2	mV	-0.20	0.25	0.46	7.16	6.26	0.87	
P101_B2	mV	-0.27	-0.07	0.20	4.99	5.07	1.02	
Vol 5V	V	0.25	0.25	-0.67%	5.06	8.66	1.71	
Vol 5V	V	0.25	0.25	0.11%	8.23	9.50	1.15	

		Mean Comparison			C	pk compariso	n	
test	Units	Old	New	Shift	Old	New	Ratio	Comment
Vio	mV	0.10	0.09	-0.01	8.45	13.39	1.6	
Vio	mV	0.01	0.09	0.08	8.1	10.05	1.2	
Vio	mV	0.04	0.04	0.00	8.23	14.77	1.8	
Vio	mV	0.06	0.09	0.03	7.79	12.16	1.6	
lcc	mA	1.17	1.26	0.09	12.18	18.82	1.5	
Vio	mV	0.05	0.05	0.00	10.22	16.18	1.6	
Vio	mV	0.05	0.06	0.01	9.7	11.67	1.2	
Vio	mV	-0.03	0.03	0.06	9.55	15.65	1.6	
Vio	mV	0.02	0.06	0.03	9.26	13.16	1.4	
lcc	mA	1.02	1.07	0.05	2.88	5.20	1.8	
Vio	mV	0.10	0.09	-0.01	5.00	6.13	1.2	
Vio	mV	0.10	0.10	0.00	3.30	4.41	1.3	
Vio	mV	0.03	0.07	0.04	5.60	6.02	1.1	
Vio	mV	0.06	0.09	0.04	4.10	5.03	1.2	
lcc	mA	0.96	1.01	0.05	4.34	8.41	1.9	
Vio	mV	0.14	0.13	-0.01	4.4	6.09	1.4	
Vio	mV	0.14	0.14	0.00	4.1	4.36	1.1	
Vio	mV	0.07	0.11	0.04	5.2	5.99	1.2	
Vio	mV	0.10	0.13	0.04	4.5	5.01	1.1	

P60B

	P60B										
		Me	ean Compa	rison	Ср	k Compariso	n				
Test Name	Unit	Old	New	% Shift	Old	New	Ratio	Comments			
Voh 5V	V	4.23	4.24	-0.01%	29.82	23.04	0.77				
Voh 5V	V	4.27	4.24	0.03%	30.4	22.54	0.74				
Voh 5V	V	4.28	4.24	0.04%	33.94	21.22	0.63				
Voh 5V	V	4.27	4.24	0.03%	32.88	18.64	0.57				
Voh 5V	V	4.28	4.24	0.04%	33.19	16.73	0.50				
Voh 5V	v	4.28	4.24	0.04%	33.23	14.54	0.44				
Voh 5V	v	4.26	4.23	0.03%	29.12	12.71	0.44				
Voh 5V	v	4.26	4.25	0.01%	29.23	11.48	0.39				
Voh 5V	v	4.25	4.25	0.00%	26.92	10.81	0.40				
Voh 5V	v	4.24	4.24	0.00%	28.73	11.00	0.38				
Voh 15V	v	14.43	14.31	0.12%	16.22	14.29	0.88				
Voh 15V	v	14.35	14.31	0.05%	16.14	13.52	0.84				
Voh 15V	v	14.36	14.30	0.06%	16.37	11.52	0.70				
Voh 15V	v	14.35	14.30	0.05%	17.37	9.44	0.54				
Voh 15V	v	14.35	14.30	0.06%	16.15	8.00	0.50				
Voh 15V	V	14.35	14.29	0.06%	18.93	6.59	0.35				
Voh 15V	V	14.34	14.28	0.05%	18.42	5.60	0.30				
Voh 15V	V	14.29	14.32	-0.04%	11.84	5.18	0.44				
Voh 15V	V	14.28	14.32	-0.05%	11.92	4.60	0.39				
Voh 15V	V	14.27	14.32	-0.04%	14.25	4.43	0.31				
ILL_pin 11	nA	-19.30	-30.12	10.82%	47.06	6.74	0.14				

				28-July-2014	4	I	Report ID 2012-W23 AG-SO		
ILH_pin 12	nA	-2.69	-4.58	1.89%	750.45	1045.91	1.39		
ILH_pin 11	nA	-12.50	-2.66	-9.84%	108.19	870.66	8.05		
ILL_pin 12	nA	3.94	5.28	-1.35%	260.4	577.85	2.22		
lcc	uA	0.01	-0.03	0.04%	297.49	380.99	1.28	within limits	
Icc	uA	0.02	0.01	0.01%	454.59	927.07	2.04	within limits	
Icc	uA	0.12	0.07	0.06%	86.45	310.08	3.59	within limits	
Icc	uA	0.28	0.02	0.26%	406.38	572.34	1.41	within limits	
Vol 5V	mV	131.99	134.77	-2.79%	20.24	31.35	1.55		
Vol 5V	mV	134.09	135.06	-0.97%	18.82	27.32	1.45		
Vol 5V	mV	138.79	137.23	1.56%	18.71	22.77	1.22		
Vol 5V	mV	138.43	137.64	0.79%	18.49	24.04	1.30		
Vol 5V	mV	139.01	137.12	1.88%	18.03	22.66	1.26		
Vol 5V	mV	146.01	144.41	1.60%	17.13	23.07	1.35		
Vol 5V	mV	123.92	126.61	-2.69%	18.06	32.94	1.82		
Vol 5V	mV	141.68	131.88	9.79%	15.75	29.84	1.89		
Vol 5V	mV	148.70	138.11	10.60%	16.96	22.58	1.33		
Vol 5V	mV	157.08	145.93	11.15%	17.21	19.46	1.13		
Vol 15V	mV	217.38	208.10	9.29%	43.32	39.89	0.92		
Vol 15V	mV	386.89	375.07	11.81%	20.05	33.49	1.67		
Vol 15V	mV	403.52	417.17	-13.65%	19.52	26.63	1.36		
Vol 15V	mV	408.17	419.30	-11.14%	19.5	29.90	1.53		
Vol 15V	mV	407.64	416.66	-9.02%	18.35	26.99	1.47		
Vol 15V	mV	420.48	427.56	-7.09%	19.15	27.83	1.45		
Vol 15V	mV	351.04	363.88	-12.84%	21.48	45.69	2.13		
Vol 15V	mV	380.58	393.31	-12.73%	17.21	33.46	1.94		
Vol 15V	mV	415.37	425.96	-10.60%	18.23	26.77	1.47		
Vol 15V	mV	480.26	466.26	14.00%	19.37	22.61	1.17		

Whiskers test:

The whisker test procedures identified in this report are used for determining the presence of tin whiskers and are performed by STMicroelectronics Inc., pursuant to current industry accepted JEDEC standards. The whisker test procedures used herein are unproven and may produce inconclusive results. STMicroelectronics Inc. makes no representation, warranty or guarantee of any kind with respect to the field performance, quality or freedom from whisker-related failures, of any package tested by STMicroelectronics using these procedures.

Gen	eral In	forma	tion

Package	SO8L
Factory	STMicroelectronics Morocco
Factory Location	Bouskoura
Lead Frame Alloy	Copper : 0194
Lead Finish	Matte Tin
Tin Thickness	7 – 20 um on leads
Plating Vendor	Atotech GmbH
Plating Machine	MECO
Plating Chemistry	Stannopure HSM
Mitigation	Post Plating Bake within 24hrs @150 for 1 hr.

Chemical Plating process information

September 11, 2008									
Description	Process	Volume tank (liter)	Make up Concentration (g/l or ml/l)	Density	Quantity used for the bath				
Electro cleaner	Puronon RTR	80	100g/I		8kg				
Activation Ni/Fe									
Descabase Cu			50g/l		4kg				
Activation Cu	Activation Cu H2SO4		30ml/l	1.61	3.36litre				
Predip	MSA Special Acid HS	80	100ml/l	1.34	8litres				
	MSA Tin Solution HS 20		70g/l	1.53	81 litres				
	MSA Special Acid HS	1	190 g/l	1.34	71 litres				
	Stannopure HSM Additive HT	320	50ml/l	1	16litres				
	Stannopure HSM Grain Refiner GF		15ml/I	1	4.8litres				
Tin plate	Antioxydant SN		5ml/l	1	1.6 litres				
	Protectostan LF	80	100ml/l 1		8 litres				
Neutral									
	Becastrip EL Part A	240	550ml/l	1.24	132 litres				
Stripper	Becastrip EL Part B	240	20ml/l	1.53	4.8 litres				

Plating equipment & process parameters

Equipment identification	Supplier		Ту	pe		Model
MECO 1	MECO		Continuous au	tomatic platin	9	EPL 1200S
		Electro cleaner	Activation	Plating	Neutraliser	
	Temperature	50°C	RT	45°C	RT	
	Voltage /Ampérage	50A	30A	120A 120A 120A 120A		
	Belt speed					
			└ ,			

PreCondition	Conditions
No Pre condition	Ambient Only
Reflow (Single Pass)	215 deg C in air
Reflow (Single Pass)	245 – 260 deg C in air

Test	Short description	Conditions		
Thermal Cycling	тс	- 40℃ to + 85℃		
High Humidity Storage	нт	55℃-85%RH		
Controlled Ambient Storarge	RT	30℃-60%RH		

- 🥢 e –

Inspection: Top + 2 Sides

Temp. Cycles Whiskers inspection results

Optical inspection @ 50 X									
Preconditioning	Device	Sample size	n. of cycles						
			@ 0	@ 500	@1000	@1500			
None	Lot 1	4	No whiskers	No whiskers	No whiskers	No whiskers			
	Lot 2	4	No whiskers	No whiskers	No whiskers	No whisker			
	Lot 3	4	No whiskers	No whiskers	No whiskers	No whisken			
215°C	Lot 1	4	No whiskers	No whiskers	No whiskers	No whisker			
	Lot 2	4	No whiskers	No whiskers	No whiskers	No whisker			
	Lot 3	4	No whiskers	No whiskers	No whiskers	No whisker			
247℃	Lot 1	4	No whiskers	No whiskers	No whiskers	No whisker			
	Lot 2	4	No whiskers	No whiskers	No whiskers	No whisker			
	Lot 3	4	No whiskers	No whiskers	No whiskers	No whisker			

Soak 30c/60%RH Whisker Inspection Results

Optical inspection @ 50 X									
			Time in hrs						
Preconditioning	Device	Sample size	@ 0	@ 1000	@2000	@3000	@4000		
None	Lot 1	4	No whiskers	No whiskers	No whiskers	No whiskers	No whisker		
	Lot 2	4	No whiskers	No whiskers	No whiskers	No whiskers	No whisken		
	Lot 3	4	No whiskers	No whiskers	No whiskers	No whiskers	No whisken		
215℃	Lot 1	4	No whiskers	No whiskers	No whiskers	No whiskers	No whisker		
	Lot 2	4	No whiskers	No whiskers	No whiskers	No whiskers	No whisker		
	Lot 3	4	No whiskers	No whiskers	No whiskers	No whiskers	No whisker		
247°C	Lot 1	4	No whiskers	No whiskers	No whiskers	No whiskers	No whisker		
	Lot 2	4	No whiskers	No whiskers	No whiskers	No whiskers	No whisker		
	Lot 3	4	No whiskers	No whiskers	No whiskers	No whiskers	No whisker		

Soak 55c/85%RH Whisker Inspection Results

Preconditionin 9	Device	Sample size	Time in hrs						
			@ 0	@ 1000	@2000	@3000	@4000	Discounted lead	
None	Lot 1	4	No whiskers	No whiskers	No whiskers	No whiskers	No whiskers	t.	
	Lot 2	4	No whiskers	No whiskers	No whiskers	No whiskers	No whiskers	*	
	Lot 3	4	No whiskers	No whiskers	No whiskers	No whiskers	No whiskers	*	
215℃	Lot 1	4	No whiskers	No whiskers	No whiskers	No whiskers	No whiskers		
	Lot 2	4	No whiskers	No whiskers	No whiskers	No whiskers	No whiskers	-	
	Lot 3	4	No whiskers	No whiskers	No whiskers	No whiskers	No whiskers	-	
247℃	Lot 1	4	No whiskers	No whiskers	No whiskers	No whiskers	No whiskers		
	Lot 2	4	No whiskers	No whiskers	No whiskers	No whiskers	No whiskers		
	Lot 3	4	No whiskers	No whiskers	No whiskers	No whiskers	No whiskers		

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

RESTRICTIONS OF USE AND CONFIDENTIALITY OBLIGATIONS:

THIS DOCUMENT AND ITS ANNEXES CONTAIN ST PROPRIETARY AND CONFIDENTIAL INFORMATION. THE DISCLOSURE, DISTRIBUTION, PUBLICATION OF WHATSOEVER NATURE OR USE FOR ANY OTHER PURPOSE THAN PROVIDED IN THIS DOCUMENT OF ANY INFORMATION CONTAINED IN THIS DOCUMENT AND ITS ANNEXES IS SUBMITTED TO ST PRIOR EXPRESS AUTHORIZATION. ANY UNAUTHORIZED REVIEW, USE, DISCLOSURE OR DISTRIBUTION OF SUCH INFORMATION IS EXPRESSLY PROHIBITED.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2014 STMicroelectronics - All rights reserved.

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com