

MOSFET - Power, N-Channel 100 V, 4.2 mΩ, 201 A NTB004N10G

Features

- Low R_{DS(on)}
- High Current Capability
- Wide SOA
- These Devices are Pb-Free and are RoHS Compliant

Applications

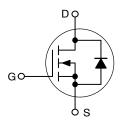
• Hot Swap in 48 V Systems

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ Unless otherwise specified)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V_{DSS}	100	V
Gate-to-Source Voltage - Continuous			V _{GS}	±20	V
Continuous Drain	Steady State	T _C = 25°C	I _D	201	Α
Current R _{θJC}	State	T _C = 100°C		142	
Power Dissipation $R_{\theta JC}$	Steady State	T _C = 25°C	P _D	340	W
Pulsed Drain Current	t _p = 10 μs		I _{DM}	3002	Α
Operating Junction and Storage Temperature Range			T _J , T _{stg}	-55 to +175	°C
Source Current (Body Diode)			I _S	283	Α
Single Pulse Drain-to-Source Avalanche Energy (V_{DD} = 50 Vdc, V_{GS} = 10 Vdc, $I_{L(pk)}$ = 102 A, L = 0.1 mH, R_G = 25 Ω)			E _{AS}	520	mJ
Lead Temperature for Soldering Purposes, 1/8" from Case for 10 Seconds			TL	260	°C

THERMAL RESISTANCE RATINGS

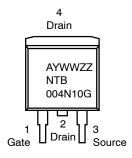
Parameter	Symbol	Max	Unit
Junction-to-Case (Drain) Steady State	$R_{\theta JC}$	0.44	°C/W
Junction-to-Ambient (Note 1)	$R_{\theta JA}$	62.5	


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1

 Surface mounted on FR4 board using 1 sq in pad size, (Cu Area 1.127 sq in [2 oz] including traces).

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX (Note 1)
100 V	4.2 m Ω @ 10 V	201 A


N-Channel

D²PAK CASE 418AJ STYLE 2

MARKING DIAGRAM & PIN ASSIGNMENT

A = Assembly Site Code

Y = Year Code WW = Week Code

ZZ = 2-digit Assembly Lot Code NTB004N10G = Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_J = 25°C Unless otherwise specified)

Characteristics	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS	•						•
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V,	I _D = 250 μA	100			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				83.2		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25°C			1.0	μΑ
		V _{DS} = 80 V	T _J = 150°C			100	1
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V	' _{GS} = ±20 V			±100	nA
ON CHARACTERISTICS (Note 2)	•	•		•	•		
Gate Threshold Voltage	V _{GS(th)}	$V_{GS} = V_{DS}, I_{D} = 500 \mu A$		2.0	2.8	4.0	V
Negative Threshold Temperature Coefficient	V _{GS(th)} /T _J				-10.5		mV/°C
Drain-to-Source On-Resistance	R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_D$	T _J = 25°C		3.4	4.2	mΩ
		= 100 A	T _J = 175°C		6.82		mΩ
Forward Transconductance	9FS	V _{DS} = 10 V	, I _D = 100 A		70		S
CHARGES, CAPACITANCES & GATE RESIST.	ANCE	•		•	•		
Input Capacitance	C _{iss}				11900		pF
Output Capacitance	C _{oss}	V _{DS} = 50 V, f - 1	, V _{GS} = 0 V, MHz		1170		1
Reverse Transfer Capacitance	C _{rss}	f = 1 MHz			147		1
Total Gate Charge	Q _{G(TOT)}				175		nC
Threshold Gate Charge	Q _{G(TH)}	1			78.4		
Gate-to-Source Charge	Q _{GS}	$V_{GS} = 10 \text{ V},$			67.3		
Gate-to-Drain Charge	Q_{GD}	I _D = 100 A			40.8		1
Plateau Voltage	V_{GP}				6.0		V
Gate Resistance	R _G	V _{OSC} = 100 mV, V _{GS} = 0 V, f = 1 MHz			0.445		Ω
SWITCHING CHARACTERISTICS, V _{GS} = 10 V	(Note 3)	l		I			
Turn-On Delay Time	t _{d(on)}				43		ns
Rise Time	t _r	Voc = 10 V.	Vpp = 50 V		64.5		1
Turn-Off Delay Time	t _{d(off)}	V_{GS} = 10 V, V_{DD} = 50 V, I_{D} = 100 A, R_{G} = 4.7 Ω			84.7		1
Fall Time	t _f				30		
DRAIN-SOURCE DIODE CHARACTERISTICS	1	l		I			
Forward Diode Voltage	V _{SD}	I _S = 100 A	T _J = 25°C		0.9	1.2	V
			T _J = 125°C		0.77		1
Reverse Recovery Time	t _{rr}	V _{GS} = 0 V, I _S = 100 A, dI _{SD} /dt = 100 A/μs			76.6		ns
Charge Time	ta				46.4		1
Discharge Time	t _b				30.2		1
Reverse Recovery Charge	Q _{RR}				157		nC

Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

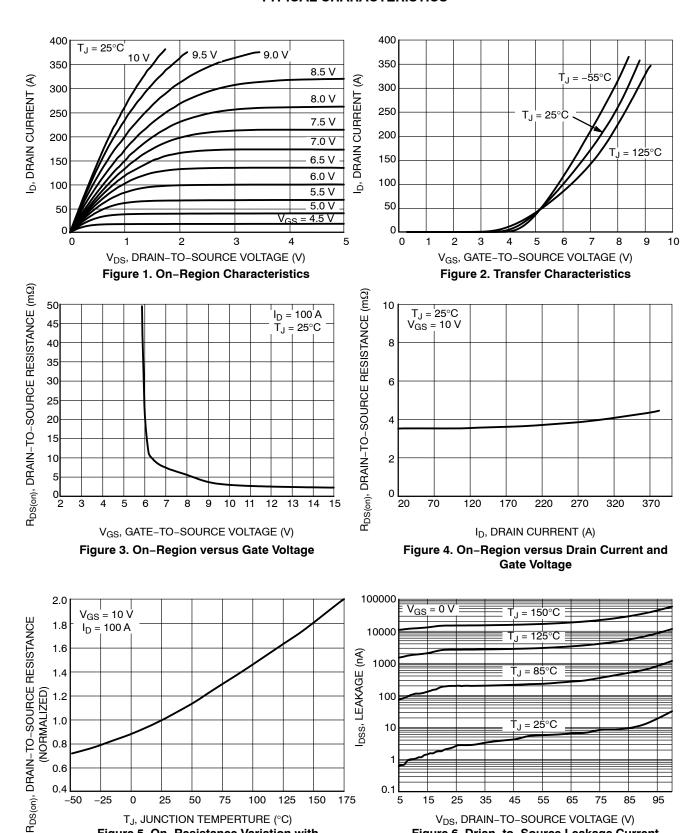


Figure 6. Drian-to-Source Leakage Current

versus Voltage

Figure 5. On-Resistance Variation with

Temperature

TYPICAL CHARACTERISTICS

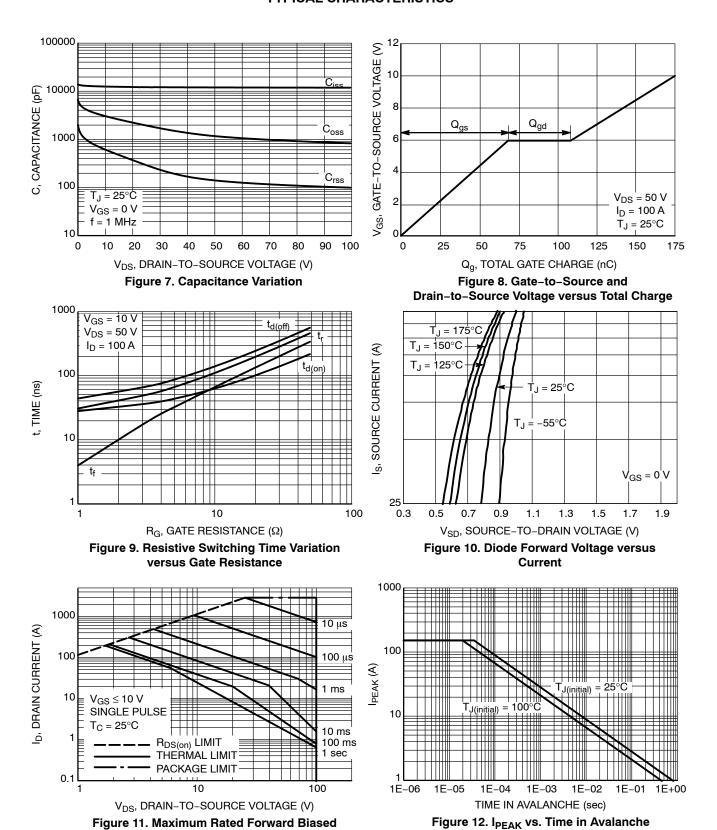


Figure 12. $I_{\mbox{\scriptsize PEAK}}$ vs. Time in Avalanche

Safe Opeating Area

TYPICAL CHARACTERISTICS

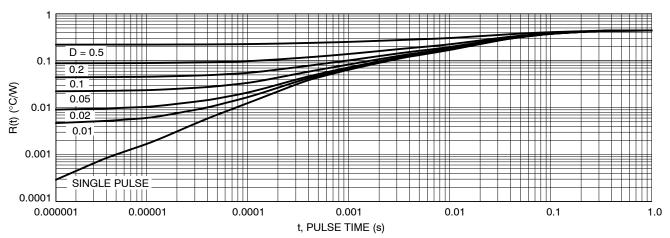
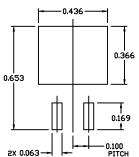


Figure 13. Thermal Response

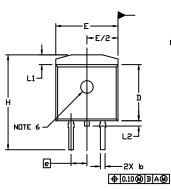
ORDERING INFORMATION


Device	Package	Shipping [†]
NTB004N10G	D ² PAK (Pb-Free)	800 / Tape & Reel

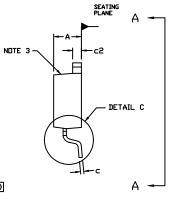
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

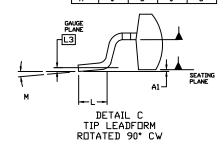
D²PAK-3 (TO-263, 3-LEAD) CASE 418AJ ISSUE F

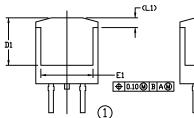
DATE 11 MAR 2021

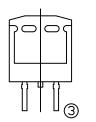

RECOMMENDED MOUNTING FOOTPRINT

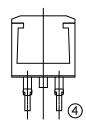
For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Table Semiconductor Manual Table 17 PROBLED

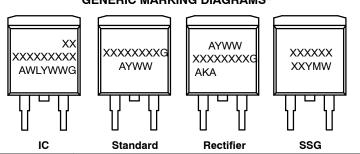

NOTES


- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: INCHES
- 3. CHAMFER OPTIONAL.
- 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.005 PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY AT DATUM H.
- 5. THERMAL PAD CONTOUR IS OPTIONAL WITHIN DIMENSIONS E, L1, D1, AND E1.
- 6. OPTIONAL MOLD FEATURE.
- 7. ①,② ... DPTIONAL CONSTRUCTION FEATURE CALL DUTS.


	INCHES		MILLIN	ETERS
DIM	MIN.	MAX.	MIN.	MAX.
A	0.160	0.190	4.06	4.83
A1	0.000	0.010	0.00	0.25
b	0.020	0.039	0.51	0.99
С	0.012	0.029	0.30	0.74
c2	0.045	0.065	1.14	1.65
D	0.330	0.380	8.38	9.65
D1	0.260		6.60	
E	0.380	0.420	9.65	10.67
E1	0.245		6.22	
e	0.100	BSC	2.54	BSC
Н	0.575	0.625	14.60	15.88
L	0.070	0.110	1.78	2.79
L1		0.066		1.68
L2		0.070		1.78
L3	0.010 BSC		0.25	BSC
м	n•	8.	n•	8.


VIEW A-A





VIEW A-A

OPTIONAL CONSTRUCTIONS

GENERIC MARKING DIAGRAMS*

XXXXXX = Specific Device Code A = Assembly Location

WL = Wafer Lot
Y = Year
WW = Work Week
W = Week Code (SSG)
M = Month Code (SSG)
G = Pb-Free Package
AKA = Polarity Indicator

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " •", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:

98AON56370E

Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

DESCRIPTION:

D²PAK-3 (TO-263, 3-LEAD)

PAGE 1 OF 1

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales