CHANGE NOTIFICATION

April 6, 2015

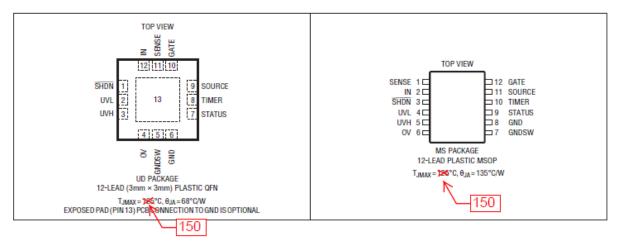
Dear Sir/Madam: PCN# 040615

Subject: Notification of Change to LTC4231 Datasheet

Please be advised that Linear Technology Corporation has made a minor change to the LTC4231 product datasheet to facilitate the addition of a high temperature H grade version of the product. The changes are shown on the attached pages of the marked up datasheet. There was no change in form, fit, function, quality or reliability of the product. The product shipped after June 8, 2015 will be tested to the new limits.

Should you have any further questions or concerns please contact your local Linear Technology Sales person or you may contact me at 408-432-1900 ext. 2077, or by e-mail at jason.hu@linear.com. If I do not hear from you by June 8, 2015, we will consider this change to be approved by your company.

Sincerely,


Jason Hu Quality Assurance Engineer

ABSOLUTEMAXIMUM RATINGS

(Notes 1, 2)

· ·	,
Supply Voltage	GATE-SENSE40V to 20V
IN40V to 40V	STATUS0.3V to 40V
Input Voltages	TIMER0.3V to 4V
SENSE, SOURCE40V to 40V	Operating Ambient Temperature Range
IN-SENSE40V to 40V	LTC4231C0°C to 70°C
SHDN, UVL, UVH, OV, GNDSW	LTC4231I40°C to 85°C
Input Currents	LTC4231H40°C to 125°C
SHDN, UVL, UVH, OV, GNDSW (Note 3)1mA	Storage Temperature Range65°C to 150°C
Output Voltages	Lead Temperature (Soldering, 10 sec)
GATE-SOURCE (Note 4)0.3V to 13V	MSOP Package300°C

PIN CONFIGURATION

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LTC4231CUD-1#PBF	LTC4231CUD-1#TRPBF	LGMX	12-Lead (3mm×3mm) Plastic QFN	0°C to 70°C
LTC4231CUD-2#PBF	LTC4231CUD-2#TRPBF	LGSP	12-Lead (3mm×3mm) Plastic QFN	0°C to 70°C
LTC4231IUD-1#PBF	LTC4231IUD-1#TRPBF	LGMX	12-Lead (3mm×3mm) Plastic QFN	-40°Cto85°C
LTC4231IUD-2#PBF	LTC4231IUD-2#TRPBF	LGSP	12-Lead (3mm×3mm) Plastic QFN	-40°Cto85°C
LTC4231HUD-1#PBF	LTC4231HUD-1#TRPBF	LGMX	12-Lead (3mm×3mm) Plastic QFN	-40°C to 125°C
LTC4231HUD-2#PBF	LTC4231HUD-2#TRPBF	LGSP	12-Lead (3mm×3mm) Plastic QFN	-40°C to 125°C
LTC4231CMS-1#PBF	LTC4231CMS-1#TRPBF	42311	12-Lead Plastic MSOP	0°C to 70°C
LTC4231CMS-2#PBF	LTC4231CMS-2#TRPBF	42312	12-Lead Plastic MSOP	0°C to 70°C
LTC4231IMS-1#PBF	LTC4231IMS-1#TRPBF	42311	12-Lead Plastic MSOP	-40°C to 85°C
LTC4231IMS-2#PBF	LTC4231IMS-2#TRPBF	42312	12-Lead Plastic MSOP	-40°C to 85°C
LTC4231HMS-1#PBF	LTC4231HMS-1#TRPBF	42311	12-Lead Plastic MSOP	-40°C to 125°C
LTC4231HMS-2#PBF	LTC4231HMS-2#TRPBF	42312	12-Lead Plastic MSOP	-40°C to 125°C

Consult LTC Marketing for parts specified with wider operating temperature ranges.

 $Consult LTC Marketing for information on nonstandard lead \ based finish parts.$

For more information on lead free part marking, go to: http://www.linear.com/leadfree/For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

$\begin{tabular}{ll} \textbf{ELECTRICAL CHARACTERISTICS} & \textbf{The} \bullet \textbf{denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^{\circ}$C. IN = 12V, unless otherwise noted.} \end{tabular}$

SYMBOL	PARAMETER	CONDITIONS	1	MIN	TYP	MAX	UNITS	
IN	.	•						
IN	Input Supply Voltage Range	•	2.	7		36	V	
IN(UVL)	Input Supply Undervoltage Lockout	IN Rising	2		2.3	2.6	V	
V _{IN(HYST)}	Input Supply Undervoltage Lockout Hysteresis				200		mV	
oc .	Supply Current (Average) Normal On, Voltage or Current Fault Start-Up or Overcurrent	(Note 5) $I_{GATE} \le -0.1 \mu A, C_{GATE-SOURCE} = 1 n F, (C-, I-Grade)$ (H-Grade) \overline{SHDN} Low, GATE Pulled to GND			4 4 300	10 20 600	µА Ац Ац	
	Shutdown	IN, SENSE = -40V, (C-, I-Grade)			0.3	1 2	μA	
	Payarea Input	(H-Grade)			-2.5	-5	μA mA	
SENSE	Reverse Input					-	IIIA	
ΔV _{SENSE(CB)}	Circuit Breaker Threshold (V _{IN} -V _{SENSE})		•	47	50	53	mV	
ΔV _{SENSE(CB)}	Analog Current Limit	During Output Short-Circuit	•	65	80	90	mV	
	SENSE Input Current	SHDN = High, SENSE = 12V	•	00	0.3	1	μA	
GATE, SOURCE	Series input content	5 riigii, oerioe- 12 v	-		0.0	•	μΛ	
ΔV _{GATE}	External N-Channel Gate Drive (VGATE - VSOURCE)	$V_{IN} < 7V$, $I_{GATE} = 0$, $-0.1 \mu A$ $V_{IN} \ge 7V$, $I_{GATE} = 0$, $-0.1 \mu A$	•	4.5 10	6.2 11.4	10 18	V V	
ΔV _{GATE(H)}	ΔV _{GATE} (V _{GATE} – V _{SOURCE}) Threshold That Deactivates the Charge Pump		•	5.5 11	6.5 11.7	10 18	V	
V _{GATE(L)}	GATE Low Threshold	To Enter Shutdown or Voltage Fault 0.4	• 4	9.5 -	1.2	1.8	V	
I _{GATE(UP)}	GATE Pull-Up Current	GATE On, GATE = 1V -7	• -	8	-10	-12	μА	-1
GATE(FAST)	GATE Fast Pull-Down Current	$\Delta V_{SENSE} = 0.5V$, $\Delta V_{GATE} = 5V$	•	70	130		mA	
GATE(SLOW)	GATE Slow Pull-Down Current	SHDN = 0V, ΔV_{GATE} = 5V	•	0.6	1		mA	
t _{D(ON)}	Turn-On Debounce Delay	UVL = UVH = 2V, OV = 0V, SHDN = Step 0V to 5V	• 4	26-	40	-54-	ms	20
t _{RETRY}	Auto-Retry Delay	LTC4231-2 0.27	• G	.325	0.5	0.675	S	0.7
t _{PHL(ILIM)}	Overcurrentto GATELow Propagation Delay	ΔV _{SENSE} = Step 0mV to 300mV, C _{GATE} = 1nF, ΔV _{GATE} Crosses 1V	•		0.5	1	µs	
UVL,UVH,OV,	GNDSW, STATUS and SHDN							
V _{UV}	UVL, UVH Threshold		• 0	.776	0.795	0.814	V	
V _{OV}	OV Threshold	OV Rising	• 0	.776	0.795	0.814	V	
V _{OV(HYST)}	OV Hysteresis		•	3	15	30	mV	
LEAK(0.9V)	UVL, UVH and OV Leakage Current	V = 0.9V, (C-, I-Grade)	•		0	±10	nA	
		(H-Grade)	•		0	±100	nA	
LEAK(12V)	UVL, UVH, OV, GNDSW, STATUS and	V =12V, (C-, I-Grade)	•		0	±100	nA	
D	SHDN Leakage Current	(H-Grade)	•		80	±500	nA	
R _{ON(GNDSW)}	Switch Resistance	1. 2004	•			200	Ω	
V _{OL}	STATUSOutputLowVoltage SHDN Input Threshold	I = 2mA	•		0.2	0.4	V	

4231f

For more information www.linear.com/LTC4231

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^{\circ}$ C. IN = 12V, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS	
t _{PERIOD}	Sampling Period		5	•	6.5	10	13.5	ms	15
t _{sample}	Sampling Width		100	•	130	200	270	μs	300
TIMER	-	·							
t _{CB}	Circuit Breaker Delay	C _T =100nF		•	1.7	2.4	3.1	ms	3.5
V _{TIMER(H)}	TIMER High Threshold	TIMER Rising		•	1.170	1.193	1.216	V	
V _{TIMER(L)}	TIMER Low Threshold	TIMER Falling		•	0.07	0.1	0.13	V	
I _{TIMER(UP)}	TIMER Pull-Up Current	TIMER=0.5V, Circuit Breaker Tripped		•	-35	-50	-65	μА	
I _{TIMER(DN)}	TIMER Pull-Down Current	TIMER = 0.5V, Circuit Breaker Recovery		•	3	5	7	μА	

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Note 2: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to GND unless otherwise specified.

Note 3: These pins can be tied to voltages below -0.3V through a resistance that limits the current below 1 mA.

Note 4: An internal clamp limits GATE to a minimum of 13V above SOURCE. Driving this pin to voltages beyond this clamp may damage the device.

Note 5: For modes where GATE is pulled to GND, $I_{CC} = I_{IN} + I_{SENSE}$. Else $I_{CC} = I_{IN} + I_{SENSE} + I_{SOURCE}$.

4231f

