

$PIC16C71 \rightarrow PIC16C710/711$ Migration

DEVICE MIGRATIONS

This document is intended to describe the functional differences and the electrical specification differences that are present when migrating from one device to the next.

Note: This device has been designed to perform to the parameters of its data sheet. It has been tested to an electrical specification designed to determine its conformance with these parameters. Due to process differences in the manufacture of this device, this device may have different performance characteristics than its earlier version. These differences may cause this device to perform differently in your application than the earlier version of this device.

Table 1 shows the considerations that must be taken into account when migrating from the PIC16C71 to the PIC16C710/711.

TABLE 1: PIC16C71 \rightarrow PIC16C710/711 DIFFERENCES

Functio	Functional Differences											
No.	Difference	H/W	S/W	Prog.								
1	Programming algorithm change			~								
2	PIC16C710/711 has BOR circuit	~		~								

Note: The user should verify that the device oscillator starts and performs as expected. Adjusting the loading capacitor values and /or the oscillator mode may be required.

TABLE 2: PROGRAM AND DATA MEMORY DIFFERENCES

	PIC16C71	PIC16C710	PIC16C711
Program Memory	1024	512	1024
Data Memory	36	36	68

Parm.	Sym.		PIC16C7	71 Data S	heet	PIC16C710	/711 Data	Units		
No.	Sym.	Characteristic	Min	Тур	Max	Min Typ			Max	Conditions
Vdd		Supply Voltage XT, RC, LP Options XT, RC Opt. Extended	3.0		6.0	2.5 3.0		6.0 6.0	V V	LC versions LC version
	Idd	Supply Current								PIC16C71/710
		XT and RC options HS option	_	1.8 4.8	3.3 10		1.8 4.5	2.4 16	mA mA	711 Note 1 Note 2 PIC16LC71/ 710/711
		XT and RC options LP option	_	1.4 15	2.5 32	_	2.0 22.5	3.8 48	mA μA	Note 3 Note 4
	IPD	Power Down Current							per 2	PIC16C71/710
		Commercial Industrial Extended		1.0 7 1.0 —	14 28.0 16 —		1.5 10.5 1.5 1.5	21 41 24 30	μΑ μΑ μΑ μΑ	711 VDD = 4.0 WDT Disabled WDT enabled WDT disabled PIC16LC71/ 710/711
		Commercial Industrial		0.6 5 0.6	9.0 20 12		0.9 7.5 0.9	5 30 5.0	μΑ	VDD = 3.0 WDT disabled WDT enabled WDT disabled
	N faire	Extended			—	—	0.9	10		WDT disabled
	Vih	Input High Voltage I/O Ports with Schmitt Trigger buffer MCLR, RB0/INT	0.85Vdd 0.85Vdd		Vdd Vdd	0.8Vdd 0.8Vdd		Vdd Vdd	V V	For all VDD
	Fosc	Oscillator Frequency	4					20		
			1 1 DC	-	4 20 200	4 5		20 — 200	MHz MHz kHz	HS osc mode HS osc mode LP osc mode
	TmLC	MCLR Pulse Width (low)	0.2	-	_	2	_	_	μs	Note 5
	Tloz	I/O HIgh Impedance from MCLR Low	_	_	0.1	_	_	1.1	μs	
	Eabs	Absolute Error (AD converter)	_	_	<±2	_	_	< ±1	LSb	LC versions
	EIL	Integral linearity error (AD converter)	_	_	<±2	_	_	< ±1	LSb	LC versions
	Edl	Differential linearity error (AD converter)			<±2	_	_	< ±1	LSb	LC versions
	Efs	Full Scale Error (AD converter)	_		<±2	_	_	< ±1	LSb	LC versions
	EOFF	Offset Error (AD converter)	_		<±2	_	_	< ±1	LSb	LC versions

TABLE 3:	ELECTRICAL	SPECIFICATION	DIFFERENCES

Note 1: Fosc = 4.0MHz, VDD = 5.5V.

2: Fosc = 20MHz, VDD = 5.5V.

3: Fosc = 4MHz, VDD = 3.0V.

4: Fosc = 32kHz, VDD = 3.0V, WDT disabled.

5: For PIC16C71: VDD = 5.0V, -40°C to +85°C; For PIC16C710/711: VDD = 5.0V, -40°C to +125°C.

Description	PIC16C71 Data Sheet	PIC16C710/711 Data Sheet	Units
Total Power Dissipation	0.8	1	W
Maximum Current out of Vss Pin	150	300	mA
Maximum Current into VDD Pin	100	250	mA
Maximum Current Sourced by any I/O Pin	20	25	mA
Maximum Current Sunk by PORTA	80	200	mA
Maximum Current Sourced by PORTA	50	200	mA
Maximum Current Sunk by PORTB	150	200	mA
Maximum Current Sourced by PORTB	100	200	mA

FIGURE 1: CONFIGURATION WORD FOR PIC16C71

— · bit13		_	_	_	_	_	_	CP0	PWRTE	WDTE	FOSC1	FOSC0 bit0	Register: Address	CONFIG 2007h
bit 13-5:	Unimplen	nented	: Read	as '1'										
bit 4:	CP0: Cod 1 = Code 0 = All me	protecti	on off		ed, but	00h - 3	Fh is w	vritable						
bit 3:	PWRTE: I 1 = Power 0 = Power	-up Tim	ner ena	bled	le bit									
bit 2:	WDTE: W 1 = WDT e 0 = WDT e	enabled	Ī	r Enable	e bit									
bit 1-0:	FOSC<1:0 11 = RC c 10 = HS c 01 = XT o 00 = LP o	oscillato oscillato scillato	r r r	Selectic	on bits									

FIGURE 2: CONFIGURATION WORD FOR PIC16C710/711

CP0 (CP0 C	P0 CP0	CP0	CP0	CP0	BODEN	CP0	CP0	PWRTE	WDTE	FOSC1	FOSC0	Register:	CONFIG
bit13												bit0	Address	2007h
bit 13-7 5-4: bit 6:	1 = Co 0 = Al BODE 1 = BO	Code Pro de protec memory N: Browr)R enable	ction off is code i-out Re ed	protec			8Fh is w	vritable						
bit 3:	PWR 1 = P\	OR disable E: Power VRT disat VRT enat	-up Tim bled	ner Ena	able bit	(1)								
bit 2:	1 = W	: Watchd DT enabl DT disabl	əd	er Enat	ole bit									
bit 1-0:	11 = F 10 = F 01 = >	<1:0>: O C oscilla S oscilla T oscillat P oscillat	tor tor tor	Select	ion bit	S								
	Ensur	e the Pow	/er-up T	imer is	enabl	ed any ti	me Bro	wn-out	Reset is	enable	ed.	ess of the scheme li	e value of bit i	PWRTE.

Note: The Power-up Timer enable bit has a reverse polarity on the PIC16C71 and PIC16C710/711.

TABLE 5:	TAD VS. DEVICE OPERATING FREQUENCIES, PIC16C71
----------	--

AD Cloc	k Source (TAD)		y			
Operation	ADCS<1:0>	20 MHz	16 MHz	4 MHz	1 MHz	333.33 kHz
2Tosc	0.0	100 ns ⁽²⁾	125 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs	6 μs
8Tosc	01	400 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs	8.0 μs	24 μs (3)
32Tosc	10	1.6 μs (2)	2.0 μs	8.0 μs	32.0 μs ⁽³⁾	96 μs ⁽³⁾
RC ⁽⁵⁾	11	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ⁽¹⁾	2 - 6 μs ⁽¹⁾

Legend: Shaded cells are outside of recommended range.

Note 1: The RC source has a typical TAD time of 4 μ s.

- 2: These values violate the minimum required TAD time.
- 3: For faster conversion times, the selection of another clock source is recommended.

4: When device frequency is greater than 1 MHz, the RC A/D conversion clock source is recommended for SLEEP operation only.

5: For extended voltage devices (LC), please refer to Electrical Specifications section.

TABLE 6: TAD vs. DEVICE OPERATING FREQUENCIES, PIC16C710/711

AD Clock	Source (TAD)	Device Frequency						
Operation	ADCS<1:0>	20 MHz	5 MHz	1.25 MHz	333.33 kHz			
2Tosc	00	100 ns ⁽²⁾	400 ns ⁽²⁾	1.6 μs	6 µs			
8Tosc	01	400 ns ⁽²⁾	1.6 μs	6.4 μs	24 μs ⁽³⁾			
32Tosc	10	1.6 μs	6.4 μs	25.6 μs ⁽³⁾	96 μs ⁽³⁾			
RC ⁽⁵⁾	11	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ⁽¹⁾			

Legend: Shaded cells are outside of recommended range.

Note 1: The RC source has a typical TAD time of 4 μ s.

2: These values violate the minimum required TAD time.

3: For faster conversion times, the selection of another clock source is recommended.

4: When device frequency is greater than 1 MHz, the RC A/D conversion clock source is recommended for SLEEP operation only.

5: For extended voltage devices (LC), please refer to Electrical Specifications section.

NOTES:

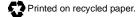
Note the following details of the code protection feature on PICmicro[®] MCUs.

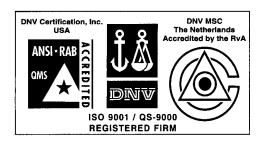
- The PICmicro family meets the specifications contained in the Microchip Data Sheet.
- Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet. The person doing so may be engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable".
- Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks


The Microchip name and logo, the Microchip logo, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, KEELOQ, SEEVAL, MPLAB and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.


Total Endurance, ICSP, In-Circuit Serial Programming, FilterLab, MXDEV, microID, *Flex*ROM, *fuzzy*LAB, MPASM, MPLINK, MPLIB, PICC, PICDEM, PICDEM.net, ICEPIC, Migratable Memory, FanSense, ECONOMONITOR, Select Mode, dsPIC, rfPIC and microPort are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Term Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2001, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com

Rocky Mountain 2355 West Chandler Blvd. Chandler AZ 85224-6199

Chandler, AZ 85224-6199 Tel: 480-792-7966 Fax: 480-792-7456

500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307

Austin - Analog

13740 North Highway 183 Building J, Suite 4 Austin, TX 78750 Tel: 512-257-3370 Fax: 512-257-8526

Boston 2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821

Boston - Analog Unit A-8-1 Millbrook Tarry Condominium 97 Lowell Road Concord, MA 01742

Tel: 978-371-6400 Fax: 978-371-0050 Chicago

333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

Dallas

4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924

Dayton Two Prestige Place, Suite 130 Miamisburg, OH 45342 Tel: 937-291-1654 Fax: 937-291-9175

Detroit Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260

Los Angeles 18201 Von Karman, Suite 1090 Irvine, CA 92612 Tel: 949-263-1888 Fax: 949-263-1338

New York

150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 631-273-5305 Fax: 631-273-5335

San Jose Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955 **Toronto**

6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia

Microchip Technology Australia Pty Ltd Suite 22, 41 Rawson Street Epping 2121, NSW Australia

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing

Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office Unit 915 Bei Hai Wan Tai Bldg. No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu

Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office Rm. 2401, 24th Floor, Ming Xing Financial Tower No. 88 TIDU Street Chengdu 610016, China Tel: 86-28-6766200 Fax: 86-28-6766599

China - Fuzhou Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office Rm. 531, North Building Fujian Foreign Trade Center Hotel 73 Wusi Road Fuzhou 350001, China Tel: 86-591-7557563 Fax: 86-591-7557572 China - Shanghai Microchip Technology Consulting (Shanghai)

Co., Ltd. Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051

Tel: 86-21-6275-5700 Fax: 86-21-6275-5060 China - Shenzhen

Microchip Technology Consulting (Shanghai) Co., Ltd., Shenzhen Liaison Office Rm. 1315, 13/F, Shenzhen Kerry Centre, Renminnan Lu Shenzhen 518001, China Tel: 86-755-2350361 Fax: 86-755-2366086 **Hong Kong** Microchip Technology Hongkong Ltd. Unit 901-6, Tower 2, Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 **India**

Microchip Technology Inc. India Liaison Office Divyasree Chambers 1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062

Japan

Microchip Technology Japan K.K. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471-6166 Fax: 81-45-471-6122 Korea Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea 135-882 Tel: 82-2-554-7200 Fax: 82-2-558-5934 Singapore Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-334-8870 Fax: 65-334-8850 Taiwan Microchip Technology Taiwan 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Denmark Microchip Technology Denmark ApS Regus Business Centre Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910

France

Arizona Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - ler Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 **Germany** Arizona Microchip Technology GmbH Gustav-Heinemann Ring 125 D-81739 Munich, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44 **Germany - Analog** Lochhamer Strasse 13 D-82152 Martinsried, Germany

D-82152 Martinsried, Germany Tel: 49-89-895650-0 Fax: 49-89-895650-22 Italy

Arizona Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy Tel: 39-039-65791-1 Fax: 39-039-6899883

United Kingdom Arizona Microchip Technology Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5869 Fax: 44-118 921-5820

08/01/01