

Maxim > Design Support > Technical Documents > Application Notes > Wireless and RF > APP 3447

Keywords: MAX2742, GPS, Complete, Stand-Alone, Receiver, SONY, CXD2932

APPLICATION NOTE 3447

Complete Stand-Alone GPS Receiver Solution with MAX2742

Feb 21, 2005

Abstract: A complete GPS solution is achieved with minimal external components, using the MAX2742 integrated CMOS RF front-end GPS receiver.

Introduction

The MAX2742 is a CMOS, single-chip, GPS front-end downconverter. This state-of-the-art device consumes very low power (32mW at 2.4V), and eliminates the need for a costly IF SAW filter or bulky discrete IF bandpass filters. The MAX2742 integrates a low-noise amplifier (LNA), mixer, BPF, automatic-gain-control amplifier (AGC), local oscillator synthesizer, clock buffer, and internal digital sampler.

Click here for an overview of the wireless components used in a typical radio transceiver

This device can interface with many commercially available GPS baseband ICs. It is suitable for many applications, including vehicle navigation, telematics, automatic security, asset tracking, location-based service (LBS), and consumer electronics. The external components required around the device are minimal for a complete GPS RF solution. The system block diagram can be found in the following section.

The MAX2742 works with an 18.414MHz* crystal or TXCO, and offers differential or single-ended** IF output at 1.023MHz. Total signal conversion gain is 120dB, with a noise figure of 4.5dB. The IF signal is sampled at the reference clock rate of 18.414MHz.

For more details, please refer to the MAX2742 data sheet.

- * Note: 18.414MHz is 18 times 1.023MHz, which is one-tenth of the GPS fundamental frequency 10.23MHz.
- ** Note: There are three IF output pins—one pair of differential outputs and one single-ended output. Selection is controlled by pin 10.

Complete GPS RF Front-End Solution

Figure 1 shows the important building blocks and features of Maxim's complete GPS RF solution. Description of the building blocks can be found in **Table 1**; cascaded performances are shown in **Table 2**. **Figure 2** shows the application circuit of the GPS receiver RF portion with the MAX2742.

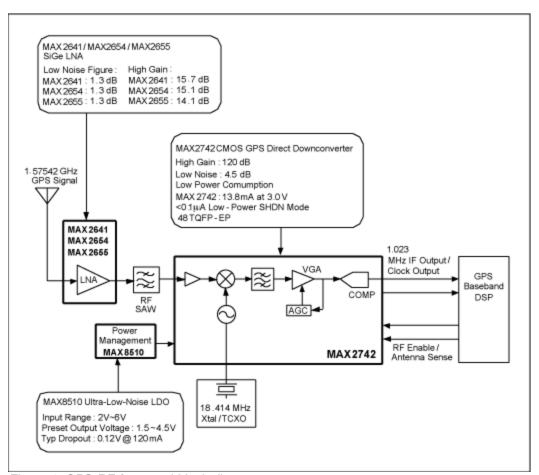
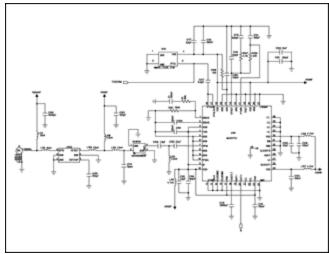


Figure 1. GPS RF front-end block diagram.


Table 1. RF Portion System Building Block

Block	Description	Note
GPS antenna	Active GPS antenna, commonly has ~1.5dB NF and ~20dB gain	
LNA	MAX2641/MAX2654/MAX2655 LNA	External LNA is required when active GPS antenna may not be present.
RF SAW	RF bandpass filter centered at 1575.42MHz	RF BPF is required for jammer immunity
Power management	MAX8510 low-noise LDO	
RF downconverter	MAX2742	
Reference clock	18.414MHz crystal/TCXO	
DSP	Baseband processor	

Table 2. System Cascaded Performance

Specification Cascaded Performance	Note

Gain	131dB	Without active antenna, assuming 15dB external LNA gain, 3dB BPF loss, and 1dB matching network loss
Noise Figure	1.9dB	Without active antenna, assuming 1.5dB external LNA NF
Power Consumption	20mA	MAX2744+MAX2654 as an example

For Larger Image

Figure 2. GPS RF portion schematic for MAX2742.

Complete Stand-Alone GPS Receiver Solution

There are more building blocks to construct a complete GPS receiver, other than just the RF plus baseband IC. As shown in **Figure 3**, an extra antenna supply-control block, a RESET circuit, and a delay circuit are needed. Description of the building blocks can be found in **Table 3**; cascaded performances are shown in **Table 4**.

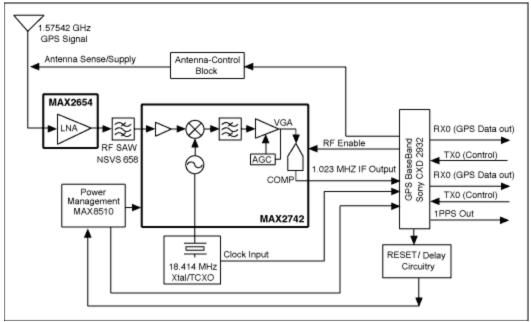
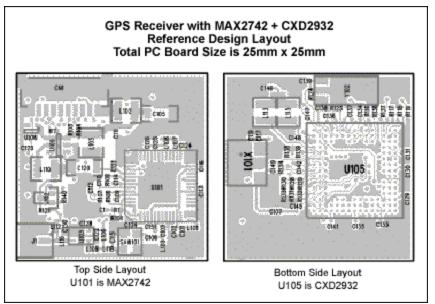



Figure 3. Complete GPS receiver solution block diagram.

Table 3. System Building Block

Table 3. System Building Block				
Description	Note			
GPS antenna	Refer to the RF portion for details.			
MAX2654 LNA	Refer to the RF portion for details.			
RF bandpass	Refer to the RF portion for details.			
MAX8510 low-noise LDO				
MAX2742				
18.414MHz TCXO	The TCXO also supplies the baseband clock. In this reference design, GPS clock output from the MAX2742 is not used.			
Sony CXD2932	The CXD2932 also controls active antenna supply, RESET function. See details below.			
Antenna supply control with p-MOSFET and current-sense resistor	The sense resistor feeds the antenna supply information back to CXD2932. There are three possible conditions: normal, short, and open.			
Different levels of RESET, and delay circuit required by CXD2932	To ensure successful startup, CXD2932 requires two RESET signals 100ms apart.			
TX: external control command				
RX: GPS data out	Data-rate programmable			
1PPS: one pulse-per- second signal	This signal is aligned with GPS atomic clock.			
	Description GPS antenna MAX2654 LNA RF bandpass MAX8510 low-noise LDO MAX2742 18.414MHz TCXO Sony CXD2932 Antenna supply control with p-MOSFET and current-sense resistor Different levels of RESET, and delay circuit required by CXD2932 TX: external control command RX: GPS data out 1PPS: one pulse-per-			

Figure 4 shows the real PCB layout of the reference design. The complete solution only occupies 25mm x 25mm of PC board space.

For Larger Image

Figure 4. GPS Receiver PCB layout.

Table 4. Module Performance (LNA + MAX2742 + SONY CXD2932)

No.	Parameter	Symbol	Conditions	System Specifications	Maxim Target	Measured	Units
1	Power supply	Vcc	(Note 1)	2.7 ~ 3.6		T.C.	\vee
2	Current consumption	ICC	$V_{CC} = 3.0V$		91	88	mA
3.1	Sensitivity	Sens	Acquisition	Tracking	-145	-145	dBm
3.2		06113			-138	-138	abili
4	TTFF	TFC	Cold start		58 (typ)	60 (max)	S
5		TFW	Warm start		45	30 (max)	S
6		TFH	Hot start		17	6 (max)	S
7	Position drift range	PR	95% possibility		100	90	ft
8	1PPS output accuracy	1PPS			1	N.M.	ns

Note 1: T.C. = test condition, N.M. = not measured

Related Parts		
MAX2641	300MHz to 2500MHz SiGe Ultra-Low-Noise Amplifiers	Free Samples
MAX2654	1575MHz/1900MHz Variable-IP3 Low-Noise Amplifiers	Free Samples

MAX2655	1575MHz/1900MHz Variable-IP3 Low-Noise Amplifiers	Free Samples
MAX2742	Single-Chip Global Positioning System Receiver Front- End	
MAX8510	Ultra-Low-Noise, High PSRR, Low-Dropout, 120mA Linear Regulators	Free Samples

More Information

For Technical Support: http://www.maximintegrated.com/support

For Samples: http://www.maximintegrated.com/samples

Other Questions and Comments: http://www.maximintegrated.com/contact

Application Note 3447: http://www.maximintegrated.com/an3447

APPLICATION NOTE 3447, AN3447, AN 3447, APP3447, Appnote 3447, Appnote 3447

Copyright © by Maxim Integrated Products

Additional Legal Notices: http://www.maximintegrated.com/legal