

PRODUCT/PROCESS CHANGE NOTIFICATION

PCN AMS-AAS/13/7796 Dated 25 Apr 2013

High Speed CMOS Technology transfer from 5" to 6" in ST Singapore

Table 1. Change Implementation Schedule

Forecasted implementation date for change	18-Apr-2013
Forecasted availability date of samples for customer	18-Apr-2013
Forecasted date for STMicroelectronics change Qualification Plan results availability	18-Apr-2013
Estimated date of changed product first shipment	25-Jul-2013

Table 2. Change Identification

Product Identification (Product Family/Commercial Product)	See attached	
Type of change	Waferfab process change	
Reason for change	Production rationalization	
Description of the change	Progressing on the activities related to high speed CMOS manufacturing processes, ST is glad to announce availability of 6 inches wafer production line, for AMS products in ST Ang Mo Kio (Singapore). Samples of M74HC4051RM13TR, M74HC04RM13TR, M74HC14RM13TR, M74HC151RM13TR, M74HC165RM13TR, M74HC4052R M74HC4060RM13TR, M74HC4094RM13TR are available from now. Samples other products will be available in the coming weeks upon customer request.	
Change Product Identification	Date code & lot number	
Manufacturing Location(s)		

2/23

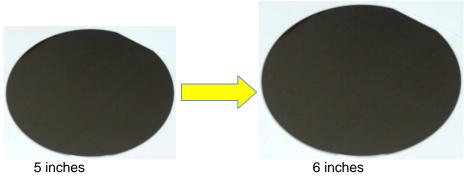
Table 3. List of Attachments

Customer Part numbers list	
Qualification Plan results	

>~
PCN AMS-AAS/13/7796
Dated 25 Apr 2013
Name:
Title:
Company:
Date:
Signature:

Name	Function
Grillo, Lionel	Marketing Manager
De marco, Alberto	Product Manager
Bugnard, Jean-Marc	Q.A. Manager

DOCUMENT APPROVAL



PRODUCT/PROCESS CHANGE NOTIFICATION

PCN AMS-APD/13/7796

Analog, MEMS and Sensor Group

Wafer dimension change from 5 inches to 6 inches for High speed CMOS technology in ST Singapore

High speed CMOS

WHAT:

Progressing on the activities related to high speed CMOS manufacturing processes, ST is glad to announce availability of 6 inches wafer production line, for AMS products.

	Current process	Modified process	Comment
Material	5 inches	6 inches	
diffusion location	ST Ang Mo Kio (Singapore) ST AMJ9	ST Ang Mo Kio (Singapore) ST AMJ9	No change
Wafer dimension	5 inches	6 inches	
OCR (Optical charac- ter recognition)	NO	YES	Laser marking on wafer, which allow better traceability
Metallization	AlSi	AISi	No change
Passivation	Pvapox/Nitride	Pvapox/Nitride	No change
EWS	ST Singapore	ST Singapore	No change

For the complete list of part numbers affected by the change, please refer to the attached Product list. Samples of M74HC4051RM13TR, M74HC04RM13TR, M74HC14RM13TR, M74HC151RM13TR, M74HC165RM13TR, M74HC4052RM13TR, M74HC4060RM13TR, M74HC4094RM13TR are available from now. Samples of other products will be available in the coming weeks upon customer request.

WHY:

To upgrade manufacturing line from 5 inches to 6 inches in order to improve customer service.

HOW:

The change that covers AMS (Analog, Mems & Sensors) products is qualified based on qualification plan here attached.

Here below you'll find the details of qualification plan.

Qualification program and results:

The qualification program consists mainly of comparative electrical characterization and reliability tests. Please refer to Reliability evaluation plan for all the details.

WHEN:

Production in ST Singapore in 6 inches for AMS is forecasted week16 2013 for High Speed CMOS technology.

Marking and traceability:

Unless otherwise stated by customer specific requirement, the traceability of the parts assembled with the new material set will be ensured by datecode and lot number.

The changes here reported will not affect the electrical, dimensional and thermal parameters keeping unchanged all information reported on the relevant datasheets.

There is as well no change in the packing process or in the standard delivery quantities.

Lack of acknowledgement of the PCN within 30 days will constitute acceptance of the change. After acknowledgement, lack of additional response within the 90 day period will constitute acceptance of the change (Jedec Standard No. 46-C).

In any case, first shipments may start earlier with customer's written agreement.

Change Qualification Plan

High speed CMOS transfer 5 to 6 inches

	Test vehicle	Lo	cations
Product Lines:	R595, Z460, Z494, Z451	Wafer Diffusion Plants:	ST Singapore
Product Families:	8 bit shift register without ouput latches (3 state), Single 8-Channel	EWS Plants:	ST Singapore
	Analog Multiplexer/Demultiplexe,	Assembly Plants:	ST Bouskoura
	Single 8-Channel Analog Multiplexer/Demultiplexe	T&F Plants:	ST Bouskoura
P/Ns:	M74HC595YRM13TR, M74HC4060YRM13TR, M74HC4094YRM13TR, M74HC4051RM13TR	Reliability Lab.:	ST Catania
Product Groups:	AMS		
Product Divisions:	Analog & Audio System		
Packages:	S016		
Silicon Process tech	n.: High speed CMOS		

DOCUMENT INFORMATION

Version	Date	Pages	Prepared by	Comment
1.0	05-Apr-2013	15	JM Bugnard	First issue

Reference document :

REL-6043-055-13 / FLG-018, April 2013, author Giuseppe Failla and Angelo Basile Approved By Giovanni Presti REL-6043-100.BSA.013.13, April 2013, author Giuseppe Failla and Angelo Basile Approved By Giovanni Presti REL-6043-101.BSA.032-13, April 2013, author Giuseppe Failla and Angelo Basile Approved By Giovanni Presti

Note: This report is a summary of the qualification trials performed in good faith by STMicroelectronics in order to evaluate the potential qualification risks during the product life using a set of defined test methods.

This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics general terms and conditions of Sale. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics.

TABLE OF CONTENTS

1 2	1 APPLICABLE AND REFERENCE DOCUMENTS					
3	QUALIFICATION EVALUATION OVERVIEW					
	3.1	OBJECTIVES	5			
	3.2	CONCLUSION	5			
4	CHA	NGE CHARACTERISTICS	6			
	4.1	CHANGE DESCRIPTION	6			
	4.2	CHANGE DETAILS	6			
	4.3	TEST VEHICLES DESCRIPTION	6			
5	TEST	IS RESULTS SUMMARY	7			
	5.1	TEST VEHICLES	7			
	5.2	TEST PLAN AND RESULTS SUMMARY	7			
6	ANN	EXES	8			
	6.1	COMPARISON DATA RESULTS	8			
6	5.1.1	Electrical Data				
	TEST	S DESCRIPTION1	6			

<u>1</u> APPLICABLE AND REFERENCE DOCUMENTS

Document reference	Short description	
AEC-Q100	Stress test qualification for automotive grade integrated circuits	
AEC-Q101	Stress test qualification for automotive grade discrete semiconductors	
AEC-Q001	Guidelines for part average testing	
AEC-Q003	Guidelines for Characterizing the Electrical Performance of IC Products	
JESD47	Stress-Test-Driven Qualification of Integrated Circuits	

2 GLOSSARY

DUT	Device Under Test
PCB	Printed Circuit Board
SS	Sample Size

<u>3</u> QUALIFICATION EVALUATION OVERVIEW

3.1 Objectives

Through this qualification plan, the high speed CMOS technology transfer is evaluated, to be diffused at ST Singapore in 6 inches instead of 5 inches.

3.2 Conclusion

Qualification Plan requirements must be fulfilled without exception. It is stressed that reliability tests must show that the devices behave correctly against environmental tests (no failure). Moreover, the stability of electrical parameters during the accelerated tests must demonstrate the ruggedness of the products and safe operation, which is consequently expected during their lifetime.

<u>4</u> CHANGE CHARACTERISTICS

4.1 Change description

Transfer of High Speed CMOS technology from 5 inches to 6 inches.

4.2 Change details

	Current process	Modified process	Comment
Material	5 inches	6 inches	
diffusion location	ST Ang Mo Kio (Singapore) ST AMJ9	ST Ang Mo Kio (Singapore) ST AMJ9	No change
Wafer dimension	5 inches	6 inches	
OCR (Optical charac- ter recognition)	NO	YES	Laser marking on wafer, which allow better traceability
Metallization	AlSi	AlSi	No change
Passivation	Pvapox/Nitride	Pvapox/Nitride	No change
EWS	ST Singapore	ST Singapore	No change

4.3 Test vehicles description

	P/N	P/N	P/N	P/N
	M74HC595YRM13TR	M74HC4060YRM13TR	M74HC4094YRM13TR	M74HC4051RM13TR
Wafer/Die fab. information				
Wafer fab manufacturing location	ST Singapore	ST Singapore	ST Singapore	ST Singapore
Technology	High speed CMOS	High speed CMOS	High speed CMOS	High speed CMOS
Process family	NHSFII_HSCMOS	NHSFII_HSCMOS	NHSFII_HSCMOS	NHSFII_HSCMOS
Die finishing back side	Lapped silicon	Lapped silicon	Lapped silicon	
Die size (microns)	2144x1412	2284x1794	1778x1274	1778x1726
Bond pad metallization layers	AlSi	AlSi	AlSi	AlSi
Passivation type	Pvapox+Nitride	Pvapox+Nitride	Pvapox+Nitride	Pvapox+Nitride
Wafer Testing (EWS) in-				
formation				
Electrical testing manufacturing location	ST Singapore	ST Singapore	ST Singapore	ST Singapore
Tester	ASL1000	ASL1000	ASL1000	ASL1000
Assembly information				
Assembly site	ST Bouskoura	ST Bouskoura	ST Bouskoura	ST Bouskoura
Package description	SO16	SO16	SO16	SO16
Molding compound	Sumitomo G700K	Sumitomo G700K	Sumitomo G700K	Sumitomo G700K
Frame material	Copper	Copper	Copper	Copper
Die attach process	Epoxy glue	Epoxy glue	Epoxy glue	Epoxy glue
Die attach material	Abklestick 8601-S25	Abklestick 8601-S25	Abklestick 8601-S25	Abklestick 8601-S25
Wire bonding process	Thermosonic ball bonding	Thermosonic ball bonding	Thermosonic ball bonding	Thermosonic ball bonding
Wires bonding mate-	Copper 1 mil	Copper 1 mil	Copper 1 mil	Copper 1 mil
rials/diameters				
Lead finishing process	Preplated frame	Preplated frame	Preplated frame	Preplated frame
Lead finishing/bump solder mate- rial	NiPdAgAu	NiPdAgAu	NiPdAgAu	NiPdAgAu
Final testing information				
Testing location	ST Bouskoura	ST Bouskoura	ST Bouskoura	ST Bouskoura
Tester	ASL1K	ASL1K	ASL1K	ASL1K

5 TESTS RESULTS SUMMARY

5.1 Test vehicles

Lot #	P/N	Process/ Package	Product Line	Comments
1	M74HC595YRM13TR	High speed CMOS/SO16	R595	Diffusion lot VW235NL92
2	M74HC4060YRM13TR	High speed CMOS/SO16	Z460	Diffusion lot VW241KPF
3	M74HC4094YRM13TR	High speed CMOS/SO16	Z494	Assy lot CZ2440LT01
4	M74HC4051RM13TR	High speed CMOS/TSSOP16	Z451	Diffusion lot VW241KPHE

5.2 Test plan and results summary

							Failu	ire/SS		
Test	PC	Std ref.	Conditions	SS	Steps	Lot 1	Lot 2	Lot 3	Lot4	Note
Die Oriented Tests					•		•		-	-
HTB High Temp. Bias	Ν	JESD22 A-108	Tj = 125°C, BIAS		168H 1000H	0/77 0/77	0/77 0/77	(1)	0/77 0/77	
HTSL High Temp. Storage Life	Ν	JESD22 A-103	Ta = 150°C		168H 1000 H	0/45 0/45	0/45 0/45	(1)	0/45 0/45	
ELFR Early Life Failure Rate	Ν	AEC Q100 - 008	Ta=125°C		48H	0/800	0/800	(1)	0/800	
Package oriented tes	st									
PC Preconditioning		JESD22 A-113	Drying 24 H @ 125°C Store 168 H @ Ta=85°C Rh=85% Oven Reflow @ Tpeak=260°C 3 times		Final	Pass	Pass	(1)	Pass	MSL1
AC Auto Clave (Pressure Pot)	Y	JESD22 A-102	Pa=2Atm / Ta=121°C		168 H	0/77	0/77	(1)	0/77	
TC Temperature Cycling	Y	JESD22 A-104	Ta = -65°C to 150°C		100cy 500cy	0/77 /077	0/77 /077	(1)	1/77 1/77	note(2)
THB Temperature Humidity Bias	Y	JESD22 A-101	Ta = 85°C, RH = 85%, BIAS		168H 500 H	0/77 0/77	0/77 0/77	(1)	0/77 0/77	
Other Tests										
			HBM		2kV	0/3	0/3	(1)	0/3	
ESD Electro Static Dis-	-	AEC Q101-001, 002 and 005	CDM			200V(0/3)	200V(0/3)	(1)	750V(0/3)	
charge			MM			750V(0/3)	1kV(0/ 3)	(1)		
LU Latch up	Ν	AEC Q100-004	LU			0/12	0/12	(1)		

(1) Electrical characterization only

(2) 1 reject in thermal cycling due to broken stitch, handling issue not linked with present diffusion qualification.

<u>6</u> <u>ANNEXES</u>

6.1 Comparison Data Results

6.1.1 Electrical Data

Part Number: M74HC4060YRM13TR (Final test)

			Т	est Cond	lition				Value					
	Symbol	Parameter	V _{cc}				T _A = 2	5°C	-40 to	85°C	-55 to	125°C	Unit	
			(Ŭ)			Min.	Тур	. Max.	Min.	Max.	Min.	Max.	İ	
±	V _{OH}	High Level Output	2.0	ا ₀ =-	20 µA	1.9	2.0		1.9		1.9			
		Voltage (Q Output)	4.5	I ₀ =-	20 µA	4.4	4.5		4.4		4.4		1	
		(& Cuput)	6.0	I ₀ =-	-20 μA	5.9	6.0		5.9		5.9		V	
			4.5	I ₀ =-4	4.0 mA	4.18	4.31		4.13		4.10		t	
			6.0	I _O =-	5.2 mA	5.68	5.8		5.63		5.60		İ	
+		ł							Resi	ılts	-			→
		Parameter						Before		-	After	Chang	P	Note
	t	est parameter			Out	Unit		Avg			Avg			Note
VOH (H		utput Voltage) at Vcc=2V	Iout=-20	hıA	Q12	V		1.99	>2		1.99	>		conform
,	0	utput Voltage) at Vcc=2V			Q13	v		1.99	>2		1.99		2	conform
1	2	utput Voltage) at Vcc=2V			Q14	V		1.99	>2		1.99	>		conform
,	U	tput Voltage) at Vcc=2V			Q6	v		1.99	>2		1.99	>		conform
VOH (Hi	igh Level Ou	tput Voltage) at Vcc=2V	/ Iout=-20	JuA	Q5	V		1.99	>2	2	1.99	>	2	conform
VOH (Hi	igh Level Ou	tput Voltage) at Vcc=2V	/ Iout=-20	JuA	Q7	v		1.99	>2	2	1.99	>	2	conform
VOH (Hi	igh Level Ou	tput Voltage) at Vcc=2V	/ Iout=-20	JuA	Q4	v		1.99	>2	2	1.99	>	2	conform
VOH (Hi	igh Level Ou	tput Voltage) at Vcc=2V	/ Iout=-20	JuA	Q9	v		1.99 >2		2	1.99	>2		conform
VOH (Hi	igh Level Ou	tput Voltage) at Vcc=2V	/ Iout=-20	JuA	Q8	V		1.99	>2	2	2.00	>	2	conform
VOH (Hi	igh Level Ou	tput Voltage) at Vcc=2V	/ Iout=-20	JuA	Q10			1.99	>2	2	2.00	>	2	conform
VOH (High	n Level Out	put Voltage) at Vcc=4.	5V lout=	-4mA	Q12	V		4.32	>2	2	4.28	>	2	conform
VOH (High	n Level Out	put Voltage) at Vcc=4.	5V lout=	-4mA	Q13	V		4.32	>2	2	4.28	>	2	conform
VOH (High	n Level Out	put Voltage) at Vcc=4.	5V lout=	-4mA	Q14	V		4.31	>2	2	4.28	>	2	conform
VOH (High	n Level Out	put Voltage) at Vcc=4.	5V lout=	-4mA	Q6	V		4.30	>2	2	4.27	>	2	conform
VOH (High	n Level Out	put Voltage) at Vcc=4.	5V lout=	-4mA	Q5	V		4.30	>2	2	4.26	>	2	conform
		tput Voltage at Vcc=4.5			Q7	V		4.30	>2		4.27		2	conform
· · ·		put Voltage)) at Vcc=4.			Q4	V		4.30	>2		4.26		2	conform
, v		put Voltage)) at Vcc=4.			Q9	V		4.31	>2		4.27		2	conform
		put Voltage)) at Vcc=4.			Q8 Q10	V		4.31	>1.6		4.26		.66	conform
` `		tput Voltage) at Vcc=4.5			Q10	V		4.31	>2		4.27	>		conform
· · ·	0	tput Voltage) at Vcc=6V			Q12 Q13	V		5.85	>2		5.82		2	conform
	0	tput Voltage) at Vcc=6V			Q13 Q14	V		5.85	>2		5.82		2	conform
		tput Voltage) at Vcc=6V			Q14 Q6	V		5.84	>2		5.82	>		conform
	0	tput Voltage) at Vcc=6V			Q0 Q5	V V		5.84	>2		5.81		2	conform conform
	0	tput Voltage) at Vcc=6V			Q5 Q7			5.84	>2		5.80		2	
		tput Voltage) at Vcc=6V tput Voltage) at Vcc=6V			Q4	V V		5.83 5.83	>2		5.81 5.80	>		conform conform
	<u> </u>	tput Voltage)) at Vcc=6V			Q9	V		5.83	>2		5.80	>		conform
,	0	Voltage) (Q Output) at Vc			Q8	V		5.84	>2		5.80	>		conform
	· · · ·	Voltage) (Q Output) at Ve			Q10	v		5.84	>2		5.81	>		conform

PCN AMS-APD/12/7796

		est Condition	Value														
Symbol	Symbol Parameter			T _A = 25°C			-40 to 85°C		-55 to 125°C		Unit						
		V _{CC} (V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.							
V _{OL}	Voltage	2.0	I _O =20 μA	Í	0.0	0.1		0.1		0.1							
		• •	U U	•	Voltage (Q Output)	•	•	•	4.5	I _O =20 μA		0.0	0.1		0.1		0.1
	(& Ouput)	6.0	I _O =20 μA		0.0	0.1		0.1		0.1	V						
		4.5	I _O =4.0 mA		0.17	0.26		0.33		0.40							
		6.0	I _O =5.2 mA		0.18	0.26		0.33		0.40							

Demonstern		Results										
Parameter			Before	Change	After	Change						
test parameter	Out	Unit	Avg	Cpk	Avg	Cpk	Note					
VOL (Low Level Output Voltage) at Vcc=2V Iout=20uA	Vol pin 1	mV	14.49	>2	49.72	>2	conform					
VOL (Low Level Output Voltage) at Vcc=2V Iout=20uA	Vol pin 2	mV	0.72	>2	2.60	>2	conform					
VOL (Low Level Output Voltage) at Vcc=2V Iout=20uA	Vol pin 3	mV	0.13	>2	1.47	>2	conform					
VOL (Low Level Output Voltage) at Vcc=2V Iout=20uA	Vol pin 4	mV	0.50	>2	1.64	>2	conform					
VOL (Low Level Output Voltage) at Vcc=2V Iout=20uA	Vol pin 5	mV	0.14	>2	1.60	>2	conform					
VOL (Low Level Output Voltage) at Vcc=2V Iout=20uA	Vol pin 6	mV	0.46	>2	1.42	>2	conform					
VOL (Low Level Output Voltage) at Vcc=2V Iout=20uA	Vol pin 7	mV	0.60	>2	1.60	>2	conform					
VOL (Low Level Output Voltage) at Vcc=2V Iout=20uA	Vol pin 13	mV	0.64	>2	1.41	>2	conform					
VOL (Low Level Output Voltage) at Vcc=2V Iout=20uA	Vol pin 14	mV	0.77	>2	1.76	>2	conform					
VOL (Low Level Output Voltage) at Vcc=2V Iout=20uA	Vol pin 15	mV	0.30	>2	1.71	>2	conform					
VOL (Low Level Output Voltage) at Vcc=4.5V Iout=4mA	Vol pin 1	v	0.14	>2	0.16	>2	conform					
VOL (Low Level Output Voltage) at Vcc=4.5V Iout=4mA	Vol pin 2	v	0.14	>2	0.16	>2	conform					
VOL (Low Level Output Voltage) at Vcc=4.5V Iout=4mA	Vol pin 3	v	0.14	>2	0.16	>2	conform					
VOL (Low Level Output Voltage) at Vcc=4.5V Iout=4mA	Vol pin 4	v	0.14	>2	0.16	>2	conform					
VOL (Low Level Output Voltage) at Vcc=4.5V Iout=4mA	Vol pin 5	v	0.14	>2	0.16	>2	conform					
VOL (Low Level Output Voltage) at Vcc=4.5V Iout=4mA	Vol pin 6	v	0.14	>2	0.16	>2	conform					
VOL (Low Level Output Voltage) at Vcc=4.5V Iout=4mA	Vol pin 7	v	0.14	>2	0.16	>2	conform					
VOL (Low Level Output Voltage) at Vcc=4.5V Iout=4mA	Vol pin 13	v	0.14	>2	0.16	>2	conform					
VOL (Low Level Output Voltage) at Vcc=4.5V Iout=4mA	Vol pin 14	v	0.14	2	0.16	2	conform					
VOL (Low Level Output Voltage) at Vcc=4.5V Iout=4mA	Vol pin 15	v	0.14	>2	0.17	>2	conform					
VOL (Low Level Output Voltage) at Vcc=6V Iout=5.2mA	Vol pin 1	mV	140.77	>2	158.64	>2	conform					
VOL (Low Level Output Voltage) at Vcc=6V Iout=5.2mA	Vol pin 2	mV	140.39	>2	155.65	>2	conform					
VOL (Low Level Output Voltage) at Vcc=6V Iout=5.2mA	Vol pin 3	mV	135.53	>2	156.09	>2	conform					
VOL (Low Level Output Voltage) at Vcc=6V Iout=5.2mA	Vol pin 4	mV	135.00	>2	160.77	>2	conform					
VOL (Low Level Output Voltage) at Vcc=6V Iout=5.2mA	Vol pin 5	mV	133.22	>2	152.94	>2	conform					
VOL (Low Level Output Voltage) at Vcc=6V Iout=5.2mA	Vol pin 6	mV	132.22	>2	153.47	>2	conform					
VOL (Low Level Output Voltage) at Vcc=6V Iout=5.2mA	Vol pin 7	mV	134.56	>2	152.37	>2	conform					
VOL (Low Level Output Voltage) at Vcc=6V Iout=5.2mA	Vol pin 13	mV	137.00	>2	159.62	>2	conform					
VOL (Low Level Output Voltage) at Vcc=6V Iout=5.2mA	Vol pin 14	mV	135.55	>2	154.01	>2	conform					
VOL (Low Level Output Voltage) at Vcc=6V Iout=5.2mA	Vol pin 15	mV	138.80	>2	165.62	>2	conform					

Test Condition		lest Condition	Value								
Symbol	Parameter	V _{cc}		T _A = 25°C			-40 to	85°C	-55 to 125°C		Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
I _I	Input Leakage Current	6.0	$V_{I} = V_{CC}$ or GND			± 0.1		± 1		± 1	μA

	Results									
Parameter	Unit	Before	Change	After (Change	Note				
test parameter		Avg	Cpk	Avg	Cpk					
IL (Input Leakage current)	nA	3.07	>2	2.3	>2	conform				
IL (Input Leakage current)	nA	5.51	>2	2.8	>2	conform				
IL (Input Leakage current)	nA	18.06	>2	12.9	>2	conform				
IL (Input Leakage current)	nA	5.99	>2	4.2	>2	conform				

	Symbol Parameter V _{CC}		Test Condition		Value						
Symbol				T _A = 25°C			-40 to	85°C	-55 to 125°C		Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
I _{CC}	Quiescent Supply Current	6.0	$V_{I} = V_{CC}$ or GND			4		40		80	μA

		Results										
Parameter	Unit	Before	Change	After (Change	Note						
test parameter		Avg	Cpk	Avg	Cpk							
ICC1 (Quiescent Supply Current) Vcc=6V	uA	0.21	>2	0.13	>2	conform						
ICC2 (Quiescent Supply Current) Vcc=6V	uA	0.02	>2	0.01	>2	conform						
ICC3 (Quiescent Supply Current) Vcc=6V	uA	0.27	>2	0.30	>2	conform						
ICC4 (Quiescent Supply Current) Vcc=6V	uA	0.00	>2	0.04	>2	conform						

Part number: M74HC4094YRM13TR

		Test Condition			Value							
Symbol	Parameter	V _{cc}		Т	A = 25°	C	-40 to	85°C	-55 to	125°C	Unit	
		(Ŭ)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.		
V _{OH} High Level Output		2.0	I _O =-20 μA	1.9	2.0		1.9		1.9			
	Voltage	4.5	Ι _Ο =-20 μΑ	4.4	4.5		4.4		4.4			
		6.0	I _O =-20 μΑ	5.9	6.0		5.9		5.9		V	
		4.5	I _O =-4.0 mA	4.18	4.31		4.13		4.10			
	6.0	I _O =-5.2 mA	5.68	5.8		5.63		5.60				

Deveryotan				Results			
Parameter		Unit	Befor	e Change	After (Change	Note
test parameter	Pins	Unit	Avg	Cpk	Avg	Cpk	INOLE
VOH (High Level Output Voltage) at Vcc=4.5V Iout=-4mA	VoH pin 4	V	4.29	>2	4.28	>2	conform
VOH (High Level Output Voltage) at Vcc=4.5V Iout=-4mA	VoH Pin 5	V	4.29	>2	4.28	>2	conform
VOH (High Level Output Voltage) at Vcc=4.5V Iout=-4mA	VoH pin 6	V	4.29	>2	4.28	>2	conform
VOH (High Level Output Voltage) at Vcc=4.5V Iout=-4mA	VoH pin 7	V	4.29	>2	4.28	>2	conform
VOH (High Level Output Voltage) at Vcc=4.5V Iout=-4mA	VoH pin 14	V	4.29	>2	4.28	>2	conform
VOH (High Level Output Voltage) at Vcc=4.5V Iout=-4mA	VoH pin 13	V	4.30	>2	4.28	>2	conform
VOH (High Level Output Voltage) at Vcc=4.5V Iout=-4mA	VoH pin 12	V	4.29	>2	4.28	>2	conform
VOH (High Level Output Voltage) at Vcc=4.5V Iout=-4mA	VoH pin 11	V	4.29	>2	4.28	>2	conform
VOH (High Level Output Voltage) at Vcc=4.5V Iout=-4mA	VoH pin 10	V	4.29	>2	4.28	>2	conform
VOH (High Level Output Voltage) at Vcc=4.5V Iout=-4mA	VoH pin 9	V	4.30	>2	4.29	>2	conform
VOH (High Level Output Voltage) at Vcc=6V Iout=-5.2mA	VoH pin 4	V	5.78	>2	5.77	>2	conform
VOH (High Level Output Voltage) at Vcc=6V Iout=-5.2mA	VoH pin 5	V	5.78	>2	5.77	>2	conform
VOH (High Level Output Voltage) at Vcc=6V Iout=-5.2mA	VoH pin 6	V	5.79	>2	5.77	>2	conform
VOH (High Level Output Voltage) at Vcc=6V Iout=-5.2mA	VoH pin 7	V	5.78	>2	5.77	>2	conform
VOH (High Level Output Voltage) at Vcc=6V Iout=-5.2mA	VoH pin 14	V	5.78	>2	5.77	>2	conform
VOH (High Level Output Voltage) at Vcc=6V Iout=-5.2mA	VoH pin 13	V	5.79	>2	5.77	>2	conform
VOH (High Level Output Voltage) at Vcc=6V Iout=-5.2mA	VoH pin 12	V	5.78	>2	5.77	>2	conform
VOH (High Level Output Voltage) at Vcc=6V Iout=-5.2mA	VoH pin 11	V	5.78	>2	5.77	>2	conform
VOH (High Level Output Voltage) at Vcc=6V Iout=-5.2mA	VoH pin 10	V	5.78	>2	5.78	>2	conform
VOH (High Level Output Voltage) at Vcc=6V Iout=-5.2mA	VoH pin 9	V	5.79	>2	5.78	>2	conform

PCN AMS-APD/12/7796

			Т	est Condition				Value]
s	Symbol	Parameter	V _{cc}			Γ _A = 25°	°C	-40 to	85° C	-55 to	125°C	Unit	
			(Ŭ)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.		
	V _{OL}	Low Level Output	2.0	l _O =20 μA		0.0	0.1		0.1		0.1		Ŧ
		Voltage	4.5	I _O =20 μA		0.0	0.1		0.1		0.1		
			6.0	I _O =20 μA		0.0	0.1		0.1		0.1	V	
			4.5	I _O =4.0 mA		0.17	0.26		0.33		0.40		
			6.0	I _O =5.2 mA		0.18	0.26		0.33		0.40		
					1]	Results	1				1
		Parameter				Unit		efore hange		After	Change		Note
	te	est parameter		Pins			Avg	Cp	k	Avg	Cpk	:	
VOL (Low	Level Out	tput Voltage) at Vcc=4.5V	V Iout=4m	A VoL pin 4		mV	151	>2		151	>2	c	conform
VOL (Low	Level Out	tput Voltage) at Vcc=4.5V	V Iout=4m	A VoL pin 5		mV	150	>2		151	>2	c	conform
VOL (Low	Level Out	tput Voltage) at Vcc=4.5V	V Iout=4m	A VoL pin 6		mV	149	>2		150	>2	c	conform
VOL (Low	Level Out	tput Voltage) at Vcc=4.5V	V Iout=4m	A VoL pin 7		mV	148	>2		150	>2	c	conform
VOL (Low	Level Out	tput Voltage) at Vcc=4.5V	V Iout=4m	A VoL pin 14		mV	153	>2		154	>2	c	conform
VOL (Low	Level Out	tput Voltage) at Vcc=4.5V	V Iout=4m	A VoL pin 13		mV	152	>2		154	>2	c	conform
VOL (Low	Level Out	tput Voltage) at Vcc=4.5V	V Iout=4m	A VoL pin 12		mV	152	>2		153	>2		conform
VOL (Low	Level Out	tput Voltage) at Vcc=4.5V	V Iout=4m	A VoL pin 11		mV	152	>2		152	>2	c	conform
VOL (Low	Level Out	tput Voltage) at Vcc=4.5V	V Iout=4m	A VoL pin 10		mV	152	>2		153	>2		conform
VOL (Low	Level Out	tput Voltage) at Vcc=4.5V	V Iout=4m	A VoL pin 9		mV	152	>2		158	>2		conform
`		tput Voltage) at Vcc=6V				mV	152	>2		151	>2	0	conform
VOL (Low	Level Out	tput Voltage) at Vcc=6V	Iout=5.2m	A VoL pin 5		mV	150	>2		151	>2		conform
VOL (Low	Level Out	tput Voltage) at Vcc=6V	Iout=5.2m	A VoL pin 6		mV	149	>2		149	>2	0	conform
· · ·		tput Voltage) at Vcc=6V		· ·		mV	148	>2		149	>2		conform
		tput Voltage) at Vcc=6V				mV	153	>2		155	>2	0	conform
		tput Voltage) at Vcc=6V				mV	153	>2		154	>2		conform
,		tput Voltage) at Vcc=6V				mV	152	>2		154	>2		conform
```		tput Voltage) at Vcc=6V		· · · ·		mV	152	>2		153	>2		conform
``		tput Voltage) at Vcc=6V				mV	151	>2		153	>2		conform
VOL (Low	Level Out	tput Voltage) at Vcc=6V	Iout=5.2m	A VoL pin 9		mV	152	>2		158	>2	C	conform

			Т	est Condit	ion				Value						
Symbol	Paramete	er	V _{cc}			Ţ	_A = 25°	с	-40 to	85°C	-55 to	125°C	Unit		
						Min.	Тур.	Max.	Min.	Max.	Min.	Max.			
I _I	Input Leakage Current	;	6.0	V _I = V _{CC}	or GND			± 0.1		± 1		± 1	μΑ		
Dom			Results												
rar	ameter				Unit	Before Chang			A	fter Cl	Change		Note		
test pa	arameter		Pin	s	Umt	Av	g	Cpk	A	'g	Cpk	1	Note		
IL (Input L	eakage current)	In	In Leak High PIN1		nA	1.3		>2	3.	3	>2	с	onform		
IL (Input L	eakage current)	Ir	n Leak Hi	ghPIN2	nA	0.4		>2	0.	6	>2	с	onform		
IL (Input L	eakage current)	In	Leak Hi	gh PIN3	nA	1.1		>2	1.	7	>2	с	onform		
IL (Input L	eakage current)	In	Leak Hig	h PIN15	nA	3.9	)	>2	4.	3	>2	с	onform		
IL (Input L	eakage current)	In	In Leak Low PIN1		nA	2.3	3	>2	5.5		>2	с	onform		
IL (Input L	eakage current)	In	In Leak Low PIN2		nA	4.4	4.4		3.	6	>2	с	onform		
IL (Input L	eakage current)	In	In Leak Low PIN3			4.0	4.0 >2		4.2		>2	с	onform		
IL (Input L				w PIN15	nA	5.9	)	>2	9.	0	>2	с	onform		



		ר	Test Condition		Value							
Symbol	Parameter	V _{cc}		т	A = 25°	с	-40 to	85°C	-55 to	125°C	Unit	
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.		
I _{CC}	Quiescent Supply Current	6.0	$V_{I} = V_{CC}$ or GND			4		40		80	μA	

Parameter			R	esults			
rarameter		Unit	Befor	e Change	After (	Change	Nata
test parameter	Pins	Unit	Avg	Cpk	Avg	Cpk	Note
ICC (Quiescent Supply Current) Vcc=6V	Icc @6V	uA	0.14	>2	0.12	>2	conform

		٦	Test Condition	Value							
Symbol	Parameter	Vcc		Т	A = 25°	с	-40 to	85°C	-55 to	125°C	Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
I _{OZ}	High Impedance Output Leakage Current	6.0	$V_{I} = V_{IH} \text{ or } V_{IL}$ $V_{O} = V_{CC} \text{ or } \text{GND}$			± 0.5		± 5		± 10	μA

Demonster			R	esults			
Parameter		Unit	Befor	e Change	After	Change	Note
test parameter	Pins	Umt	Avg	Cpk	Avg	Cpk	Note
IOZ (High Impedance Output Leakage Current)	IOZH Q1	nA	23.17	>2	28.62	>2	conform
IOZ (High Impedance Output Leakage Current)	IOZH Q2	nA	2.5	>2	2.6	>2	conform
IOZ (High Impedance Output Leakage Current)	IOZH Q3	nA	0.9	>2	0.5	>2	conform
IOZ (High Impedance Output Leakage Current)	IOZH Q4	nA	2.1	>2	2.5	>2	conform
IOZ (High Impedance Output Leakage Current)	IOZH Q5	nA	7.4	>2	14.1	>2	conform
IOZ (High Impedance Output Leakage Current)	IOZH Q6	nA	2.2	>2	2.8	>2	conform
IOZ (High Impedance Output Leakage Current)	IOZH Q7	nA	2.3	>2	3.0	>2	conform
IOZ (High Impedance Output Leakage Current)	IOZH Q8	nA	1.2	>2	1.2	>2	conform
IOZ (High Impedance Output Leakage Current)	IOZL Q1	nA	6	>2	6	>2	conform
IOZ (High Impedance Output Leakage Current)	IOZL Q2	nA	2	>2	3	>2	conform
IOZ (High Impedance Output Leakage Current)	IOZL Q3	nA	3	>2	1	>2	conform
IOZ (High Impedance Output Leakage Current)	IOZL Q4	nA	0	>2	1	>2	conform
IOZ (High Impedance Output Leakage Current)	IOZL Q5	nA	8	>2	0	>2	conform
IOZ (High Impedance Output Leakage Current)	IOZL Q6	nA	0	>2	2	>2	conform
IOZ (High Impedance Output Leakage Current)	IOZL Q7	nA	0	>2	2	>2	conform
IOZ (High Impedance Output Leakage Current)	IOZL Q8	nA	1	>2	1	>2	conform

- 🏹 🛛 ——

_____

					Tes	t condition					١	/alue					
Symbo I	Para	am	eter	V _{cc}	V _{EE}			1	T _A = 25	°C		-40 85	to °C		ito 5 °C	Unit	
				(V)	(V)			Min	Тур	Ма	ix	Min	Max	Min	Max		
				4.5	GND	V _I = V _{IHC} o	r Vuo		85	18	0		225		270		
				4.5	-4.5	$V_{I/O} = V_{CC}$	to V _{EE}		55	12	0		150		180		
			-	6.0	-6.0	l _{I/O} ≤2mA			50	10	0		125		150		
R _{ON}	ON res	ista	ance	2.0	GND				150							w	
				4.5	GND	V _I = V _{IHC} o	r Vuc		70	15	0		190		230		
						$V_{I/O} = V_{CC}$											
				4.5	-4.5	I _{I/O} ≤2 mA			50	10	0		125		150		
				6.0	-6.0				45	80	)		100		120		
Domo	motor				•												
Гага	meter		Unit		Befor	e Change	A	fter C	Change			Note					
test pa	rameter		Um		Avg	Cpk	Av	g	Cpł	5	1	NULE					
RON Vcc	GND		OHM		79.25	>2	76.5	54	>2		co	nform					
RON STE	EP		OHM		97.28	>2	90.3	35	>2		co	nform					
					Tes	t condition					١	/alue					
Symbo	Para	am	eter	v	v			-	°C	°C		-40 to 85 °C					Uni
I				V _{CC} (V)	V _{EE} (V)											-	
								Min	Тур	Ма	X	Min	Max	Min	Max		
	Input/o			6.0	GND		or GND			±0.0	06		±0.6		±1.2		
IOFF	leakage (switch			6.0	-6.0	V _{IS} = GND V _I = V _{ILC} o				±0	.1		±1		±2	μA	
	(Switch	UII	/			VI - VILC O	• • IHC										
Para	neter																
tost no	romo		Unit	Ŀ	Sefore	Change	Afte	r Cha	ange		No	to					
test pa			Umi	A	vg	Cpk	Avg		Cpk		1000						
IOFF3_1	oin13	nA	1	-4	4.64	>2	-32.19		>2		confo	orm					
IOFF3_J		nA	Δ	7	.30	>2	-14.21		>2		confo	orm					
IOFF3_J	pin15	nA	1	-5	5.36	>2	-46.21		>2		confo	orm					
IOFF3_I	pin12	nA	1	-4	4.30	>2	-29.06		>2		confo	orm					
IOFF3_1	pin1	nA	1	-5	5.33	>2	-34.57		>2		confo	orm					
IOFF3_j	oin5	nA	1	-5	5.37	>2	-33.66	_	>2		confo	orm					
IOFF3_I		nA			4.86	>2	-28.10		>2		confo						
IOFF3_1		nA			4.59	>2	-27.77		>2		confo						
TOPPZ		nA			).01 ).67	>2 -4.15		_	>2		confo						
IOFF7_I		nA nA				>2 15.21			>2		confo confo						
IOFF6_1	nn 14	117			.00	>2 26.35 >2 17.30			>2		confo						
IOFF6_I IOFF6_I		nΔ	•	I					>2		confo						
IOFF6_J IOFF6_J IOFF6_J	oin15	nA nA	1	1	.60	>2											
IOFF6_I IOFF6_I	pin15 pin12	nA nA nA			60 4.04	>2 >2	-23.05		>2		confe	orm					
IOFF6_1 IOFF6_1 IOFF6_1 IOFF6_1	oin15 oin12 oin1	nA	1	-4					>2 >2		confo						
IOFF6_J IOFF6_J IOFF6_J IOFF6_J IOFF6_J	0in15 0in12 0in1 0in5	nA nA	A A	-4	4.04	>2	-23.05					orm					
IOFF6_J IOFF6_J IOFF6_J IOFF6_J IOFF6_J	bin15 bin12 bin1 bin5 bin2	nA nA nA	A A A		4.04 4.20	>2 >2	-23.05 -22.87		>2		confo	orm orm					

				Tes	t cond	ition				Value				
Symbo I	Par	ameter	V _{CC}	V _{EE}			T,	_A = 25	°C		) to °C		ito i°C	Unit
			(V)	(V)			Min	Тур	Max	Min	Max	Min	Max	
ų	Input le curren	eakage t	6.0	GND	V ₁ = '	V _{CC} or GND			±0.1		±0.1		±1	μA
D								•						_
Paran	neter		Befor	e Char	nge	After C	hange							
test pa te		Unit	Avg	0	Cpk	Avg	Cpk		Note					
ILH_Inp	А	nA	3.76	>	>1.3	31.52	>2		conform					
ILH_Inp	В	nA	-2.13		>2	20.35	>2		conform					
ILH_Inp	_C	nA	5.46		>2	28.00	>2		conform					
ILH_Inp	INH	nA	7.43		>2	13.27	>2		conform					
ILL_Inp	А	nA	-5.01		>2	-17.41	>2		conform					
ILL_Inp_	B	nA	-3.12		>2	-10.08	>2		conform					
ILL_Inp_	C	nA	-6.32		>2	-19.65	>2		conform					
ILL_Inp_	INH	nA	6.56		>2	6.52	>2		conform					

			Tes	t condition				Value				
Symbo I	Parameter	V _{cc} (V)	V _{EE} (V)		т	A = 25	°C		o to °C	-55 125		Unit
		(v)	(v)		Min	Тур	Max	Min	Max	Min	Max	
	Quiescentsupply	6.0	GND	V _I = V _{CC} or GND			4		40		80	μA
Icc	current	6.0	-6.0	$v_{I} = v_{CC}$ or GIVD			8		80		160	μΑ

- **M**e

Demonster							
Parameter			Before	Change	After (	Change	
test parame- ter		unit	Avg	Cpk	Avg	Cpk	Note
Icc(VEE_HIGH)	VI=Vih	uA	-0.01	>2	-0.01	>2	conform
Icc(VEE_LOW)	VI=Vil	uA	-0.01	>2	-0.01	>2	conform
Icc(VEE_HIGH)	VI=Vih	uA	-0.01	>2	0.06	>2	conform
Icc(VEE_LOW)	VI=Vi1	uA	0.00	>2	0.07	>2	conform

Conclusion: New version in line with requirements.

# **Tests Description**

Test name	Description	Purpose
Die Oriented		
HTOL High Temperature Operating Life HTB High Temperature Bias	The device is stressed in static or dynamic configuration, approaching the operative max. absolute ratings in terms of junction temperature and bias condition.	To determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices' operating condition in an accelerated way. The typical failure modes are related to, silicon degradation, wire-bonds degradation, oxide faults.
HTRB High Temperature Reverse Bias HTFB / HTGB	The device is stressed in static configuration, trying to satisfy as much as possible the fol- lowing conditions: • low power dissipation;	To determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices' operating condition in an accelerated way. To maximize the electrical field across either re-
High Temperature Forward (Gate) Bi- as	<ul> <li>max. supply voltage compatible with diffu- sion process and internal circuitry limita- tions;</li> </ul>	verse-biased junctions or dielectric layers, in or- der to investigate the failure modes linked to mo- bile contamination, oxide ageing, layout sensitivi- ty to surface effects.
HTSL High Temperature Storage Life	The device is stored in unbiased condition at the max. temperature allowed by the pack- age materials, sometimes higher than the max. operative temperature.	To investigate the failure mechanisms activated by high temperature, typically wire-bonds solder joint ageing, data retention faults, metal stress- voiding.
<b>ELFR</b> Early Life Failure Rate	The device is stressed in biased conditions at the max junction temperature.	To evaluate the defects inducing failure in early life.
Package Oriented		
PC Preconditioning	The device is submitted to a typical temperature profile used for surface mounting devices, after a controlled moisture absorption.	As stand-alone test: to investigate the moisture sensi- tivity level. As preconditioning before other reliability tests: to verify that the surface mounting stress does not im- pact on the subsequent reliability performance. The typical failure modes are "pop corn" effect and delamination.
AC Auto Clave (Pres- sure Pot)	The device is stored in saturated steam, at fixed and controlled conditions of pressure and temperature.	contamination and package hermeticity.
TC Temperature Cy- cling	atmosphere.	To investigate failure modes related to the thermo- mechanical stress induced by the different thermal expansion of the materials interacting in the die- package system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire-bonds failure, die- attach layer degradation.
<b>THB</b> Temperature Hu- midity Bias	The device is biased in static configuration minimizing its internal power dissipation, and stored at controlled conditions of ambient temperature and relative humidity.	To evaluate the package moisture resistance with electrical field applied, both electrolytic and galvanic corrosion are put in evidence.
THS Temperature Humidi- ty Storage	The device is stored at controlled conditions of ambient temperature and relative humidity.	To investigate corrosion phenomena affecting die or package materials, related to chemical contamination and package hermeticity.

- <mark>/ _</mark>____

#### PCN AMS-APD/12/7796

Test name	Description	Purpose
PTC Power & Tempera- ture Cycling	The power and temperature cycling test is performed to determine the ability of a device to withstand alternate exposures at high and low temperature extremes with operating bi- ases periodically applied and removed.	It is intended to simulate worst case conditions encountered in typical applications. Typical failure modes are related to parametric limits and functionality. Mechanical damage such as cracking, or break- ing of the package will also be considered a fail- ure provided such damage was not uinduced by fixturing or handling.
<b>EV</b> External Visual	Inspect device construction, marking and workmanship	To verify visual defects on device (form, marking,).
<b>LI</b> Lead Integrity	when the lead(s) are bent due to faulty board assembly followed by rework of the part for reassembly.	This test is applicable to all throughhole devices and surface-mount devices requiring lead forming by the user.
<b>WBP</b> Wire Bond Pull	The wire is submitted to a pulling force (approx- imately normal to the surface of the die) able to achieve wire break or interface separation be- tween ball/pad or stitch/lead.	To investigate and measure the integrity and robust- ness of the interface between wire and die or lead metallization
<b>WBS</b> Wire Bond Shear	The ball bond is submitted to a shear force (paral- lel to the pad area) able to cause the separation of the bonding surface between ball bond and pad area.	To investigate and measure the integrity and robust- ness of the bonding surface between ball bond and pad area.
<b>DS</b> Die Shear	This determination is based on a measure of force applied to the die, the type of failure re- sulting from this application of force (if failure occurs) and the visual appearance of the re- sidual die attach media and substrate/header metallization.	The purpose of this test is to determine the integrity of materials and procedures used to attach semiconduc- tor die or surface mounted passive elements to pack- age headers or other substrates.
<b>PD</b> Physical Dimension	All physical dimension quoted in datasheet of the device are measured.	Verify physical dimensions to the applicable user de- vice packaging specification for dimensions and tol- erances.
<b>SD</b> Solderability	This evaluation is made on the basis of the ability of these terminations to be wetted and to produce a suitable fillet when coated by tin lead eutectic solder. A preconditioning test is included in this test method, which degrades the termination fin- ish to provide a guard band against marginal fin- ishes.	The purpose of this test method is to provide a referee condition for the evaluation of the solderability of terminations (including leads up to 0.125 inch in di- ameter) that will be assembled using tin lead eutectic solder. These procedures will test whether the packag- ing materials and processes used during the manufac- turing operations process produce a component that can be successfully soldered to the next level assem- bly using tin lead eutectic solder.
Other		
ESD Electro Static Dis- charge	The device is submitted to a high voltage peak on all his pins simulating ESD stress according to different simulation models. <b>CBM</b> : Charged Device Model <b>HBM</b> : Human Body Model <b>MM</b> : Machine Model	To classify the device according to his suscepti- bility to damage or degradation by exposure to electrostatic discharge.
LU Latch-Up	The device is submitted to a direct current forced/sunk into the input/output pins. Removing the direct current no change in the supply current must be observed.	To verify the presence of bulk parasitic effect in-

- <mark>/ _</mark>____

_____



PCN Title : High Speed CMOS Technology transfer from 5" to 6" in ST Singapore PCN Reference : AMS-AAS/13/7796 PCN Created on : 30-APR-2013

Subject : Public Products List

Dear Customer,

Please find below the Standard Public Products List impacted by the change:

#### ST COMMERCIAL PRODUCT

74H1G66STR M74HC00TTR M74HC02TTR
M74HC04B1R
M74HC08B1R M74HC107RM13TR
M74HC123B1R
M74HC125RM13TR
M74HC126TTR
M74HC132TTR
M74HC138TTR
M74HC139TTR
M74HC148TTR
M74HC14TTR
M74HC151TTR
M74HC157RM13TR
M74HC161RM13TR
M74HC164B1R M74HC165B1R
M74HC105B1R M74HC174B1R
M74HC174B1R M74HC175B1R
M74HC191RM13TR
M74HC221RM13TR
M74HC238TTR
M74HC244RM13TR
M74HC245TTR
M74HC251TTR
M74HC257RM13TR
M74HC259TTR
M74HC273TTR
M74HC280RM13TR
M74HC32B1R
M74HC365B1R
M74HC367B1R
M74HC368B1R

M74HC00B1R M74HC02B1R M74HC03RM13TR M74HC04RM13TR M74HC08RM13TR M74HC109RM13TR M74HC123TTR M74HC125TTR M74HC132B1R M74HC138B1R M74HC139B1R M74HC148B1R M74HC14B1R M74HC151B1R M74HC153TTR M74HC160RM13TR M74HC161TTR M74HC164RM13TR M74HC165RM13TR M74HC174RM13TR M74HC175RM13TR M74HC20RM13TR M74HC238B1R M74HC240RM13TR M74HC244TTR M74HC251B1R M74HC253RM13TR M74HC259B1R M74HC266RM13TR M74HC27RM13TR M74HC283RM13TR M74HC32RM13TR M74HC365RM13TR M74HC367RM13TR

M74HC368RM13TR

M74HC00RM13TR M74HC02RM13TR M74HC03TTR M74HC04TTR M74HC08TTR M74HC10RM13TR M74HC125B1R M74HC126RM13TR M74HC132RM13TR M74HC138RM13TR M74HC139RM13TR M74HC148RM13TR M74HC14RM13TR M74HC151RM13TR M74HC157B1R M74HC161B1R M74HC163RM13TR M74HC164TTR M74HC165TTR M74HC174TTR M74HC175TTR M74HC221B1R M74HC238RM13TR M74HC241RM13TR M74HC245RM13TR M74HC251RM13TR M74HC257B1R M74HC259RM13TR M74HC273RM13TR M74HC27TTR M74HC299RM13TR M74HC32TTR M74HC365TTR M74HC367TTR M74HC373RM13TR



PCN Title : High Speed CMOS Technology transfer from 5" to 6" in ST Singapore PCN Reference : AMS-AAS/13/7796 PCN Created on : 30-APR-2013

Subject : Public Products List (Contd.)

#### ST COMMERCIAL PRODUCT

M74HC373TTR M74HC390B1R M74HC393RM13TR M74HC4017RM13TR M74HC4024B1R M74HC4040RM13TR M74HC4049RM13TR M74HC4050TTR M74HC4051TTR M74HC4052TTR M74HC4053TTR M74HC4060TTR M74HC4066TTR M74HC4078B1R M74HC4094RM13TR M74HC4316RM13TR M74HC4520B1R M74HC4538RM13TR M74HC4543RM13TR M74HC533RM13TR M74HC563RM13TR M74HC573TTR M74HC590B1R M74HC592B1R M74HC595RM13TR M74HC597RM13TR M74HC7266B1R M74HC73TTR M74HC74TTR M74HC86TTR M74HCT00TTR M74HCT08RM13TR M74HCT138RM13TR M74HCT14TTR M74HCT244TTR

M74HC374RM13TR M74HC390RM13TR M74HC393TTR M74HC4020B1R M74HC4024RM13TR M74HC4040TTR M74HC4050B1R M74HC4051B1R M74HC4052B1R M74HC4053B1R M74HC4060B1R M74HC4066B1R M74HC4075B1R M74HC4078RM13TR M74HC4094TTR M74HC4316TTR M74HC4520RM13TR M74HC4538TTR M74HC51B1R M74HC540RM13TR M74HC564RM13TR M74HC574RM13TR M74HC590RM13TR M74HC592TTR M74HC595TTR M74HC688RM13TR M74HC7266RM13TR M74HC74B1R M74HC86B1R M74HCT00B1R M74HCT04RM13TR M74HCT132B1R M74HCT14B1R M74HCT157RM13TR M74HCT273RM13TR

M74HC377RM13TR M74HC393B1R M74HC4017B1R M74HC4020RM13TR M74HC4040B1R M74HC4049B1R M74HC4050RM13TR M74HC4051RM13TR M74HC4052RM13TR M74HC4053RM13TR M74HC4060RM13TR M74HC4066RM13TR M74HC4075RM13TR M74HC4094B1R M74HC4316B1R M74HC4518B1R M74HC4538B1R M74HC4543B1R M74HC51RM13TR M74HC541RM13TR M74HC573RM13TR M74HC574TTR M74HC590TTR M74HC595B1R M74HC597B1R M74HC688TTR M74HC73RM13TR M74HC74RM13TR M74HC86RM13TR M74HCT00RM13TR M74HCT08B1R M74HCT132TTR M74HCT14RM13TR M74HCT244RM13TR



PCN Title : High Speed CMOS Technology transfer from 5" to 6" in ST Singapore PCN Reference : AMS-AAS/13/7796 PCN Created on : 30-APR-2013

Subject : Public Products List (Contd.)

#### ST COMMERCIAL PRODUCT

M74HCT32B1R M74HCT373RM13TR M74HCT4051RM13TR M74HCT4053TTR M74HCT573RM13TR M74HCT574TTR M74HCT7007RM13TR M74HCU04RM13TR M74HC133RM13TR M74HC133B1R M74HCT32RM13TR M74HCT373TTR M74HCT4051TTR M74HCT540RM13TR M74HCT573TTR M74HCT640RM13TR M74HCT74RM13TR M74HCU04TTR M74HCT367RM13TR M74HCT374RM13TR M74HCT4053RM13TR M74HCT541RM13TR M74HCT574RM13TR M74HCT652RM13TR M74HCT652RM13TR

#### Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2013 STMicroelectronics - All rights reserved.

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com