NLAS4684

Analog Switch, Dual SPDT, Ultra-Low Resistance

The NLAS4684 is an advanced CMOS analog switch fabricated in Sub-micron silicon gate CMOS technology. The device is a dual Independent Single Pole Double Throw (SPDT) switch featuring Ultra-Low R_{ON} of 0.5Ω, for the Normally Closed (NC) switch, and 0.8Ω for the Normally Opened switch (NO) at 2.7 V .

The part also features guaranteed Break Before Make switching, assuring the switches never short the driver.

The NLAS4684 is available in a $2.0 \times 1.5 \mathrm{~mm}$ bumped die array. The pitch of the solder bumps is 0.5 mm for easy handling.

Features

- Ultra-Low $\mathrm{R}_{\mathrm{ON}},<0.5 \Omega$ at 2.7 V
- Threshold Adjusted to Function with 1.8 V Control at $\mathrm{V}_{\mathrm{CC}}=2.7-3.3 \mathrm{~V}$
- Single Supply Operation from 1.8-5.5 V
- Tiny 2 x 1.5 mm Bumped Die
- Low Crosstalk, $<83 \mathrm{~dB}$ at 100 kHz
- Full $0-V_{C C}$ Signal Handling Capability
- High Isolation, -65 dB at 100 kHz
- Low Standby Current, < 50 nA
- Low Distortion, < 0.14% THD
- R_{ON} Flatness of 0.15Ω
- Pin for Pin Replacement for MAX4684
- High Continuous Current Capability
$\pm 300 \mathrm{~mA}$ Through Each Switch
- Large Current Clamping Diodes at Analog Inputs $\pm 300 \mathrm{~mA}$ Continuous Current Capability
- Pb-Free Packages are Available

Applications

- Cell Phone
- Speaker Switching
- Power Switching
- Modems
- Automotive

ON Semiconductor ${ }^{\circledR}$

http://onsemi.com

MARKING

DIAGRAMS

Microbump-10
CASE 489AA

DFN10

CASE 485C

Micro10
CASE 846B

$$
\begin{array}{ll}
\text { A } & =\text { Assembly Location } \\
\mathrm{L} & =\text { Wafer Lot } \\
\mathrm{Y} & =\text { Year } \\
\text { WW, W } & =\text { Work Week } \\
& =\text { Pb-Free Package }
\end{array}
$$

(Note: Microdot may be in either location)

FUNCTION TABLE

IN $\mathbf{1 , 2}$	NO $\mathbf{1 , 2}$	NC $\mathbf{1 , 2}$
0	OFF	ON
1	ON	OFF

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 11 of this data sheet.

Figure 1. Pin Connections and Logic Diagram (DFN10 and Micro10)

Figure 2. Pin Connections and Logic Diagram (Microbump-10)

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Positive DC Supply Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IS }}$	Analog Input Voltage $\left(\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}\right.$, or $\left.\mathrm{V}_{\mathrm{COM}}\right)$	$-0.5 \leq \mathrm{V}_{\text {IS }} \leq \mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{~V}_{\text {IN }}$	Digital Select Input Voltage	$-0.5 \leq \mathrm{V}_{\mathrm{I}} \leq+7.0$	V
$\mathrm{I}_{\text {anl1 }}$	Continuous DC Current from COM to NC/NO	± 300	mA
$\mathrm{I}_{\text {anl-pk 1 }}$	Peak Current from COM to NC/NO, 10 duty cycle (Note 1)	± 500	mA
$\mathrm{I}_{\text {clmp }}$	Continuous DC Current into COM/NO/NC	± 300	mA
$\mathrm{I}_{\text {clmp } 1}$	Peak Current into Input Clamp Diodes at COM/NC/NO	± 500	mA

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Defined as 10% ON, 90% off duty cycle.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
$\mathrm{V}_{\text {CC }}$	DC Supply Voltage		1.8	5.5	V
$\mathrm{V}_{\text {IN }}$	Digital Select Input Voltage		GND	5.5	V
$V_{\text {IS }}$	Analog Input Voltage (NC, NO, COM)		GND	V_{CC}	V
T_{A}	Operating Temperature Range		-55	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise or Fall Time, SELECT	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 100 \\ & 20 \end{aligned}$	ns/V
ESD	Human Body Model - All Pins			5	kV

DC CHARACTERISTICS - Digital Section (Voltages Referenced to GND)

Symbol	Parameter	Condition	$\mathrm{V}_{\mathrm{Cc}} \pm 10 \%$	Guaranteed Limit			Unit
				$-55^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	$<85^{\circ} \mathrm{C}$	$<125^{\circ} \mathrm{C}$	
V_{IH}	Minimum High-Level Input Voltage, Select Inputs (Figure 9)		2.0	1.4	1.4	1.4	V
			2.5	1.4	1.4	1.4	
			3.0	1.4	1.4	1.4	
			5.0	2.0	2.0	2.0	
V_{IL}	Maximum Low-Level Input Voltage, Select Inputs (Figure 9)		2.0	0.5	0.5	0.5	V
			2.5	0.5	0.5	0.5	
			3.0	0.5	0.5	0.5	
			5.0	0.8	0.8	0.8	
I_{IN}	Maximum Input Leakage Current, Select Inputs	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$ or GND	5.5	± 1.0	± 1.0	± 1.0	$\mu \mathrm{A}$
IofF	Power Off Leakage Current	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$ or GND	0	± 10	± 10	± 10	$\mu \mathrm{A}$
ICC	Maximum Quiescent Supply Current (Note 2)	Select and $\mathrm{V}_{\text {IS }}=\mathrm{V}_{\mathrm{CC}}$ or GND	5.5	± 180	± 200	± 200	nA

[^0]DC ELECTRICAL CHARACTERISTICS - Analog Section

Symbol	Parameter	Condition	$\mathrm{V}_{\mathrm{cc}} \pm 10 \%$	Guaranteed Maximum Limit						Unit
				$-55^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$		$<85^{\circ} \mathrm{C}$		$<125^{\circ} \mathrm{C}$		
				Min	Max	Min	Max	Min	Max	
RON (NC)	NC "ON" Resistance (Note 3)	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{GND} \text { to } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{IN}} \leq 100 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 0.6 \\ & 0.5 \\ & 0.4 \end{aligned}$		$\begin{aligned} & 0.7 \\ & 0.5 \\ & 0.4 \end{aligned}$		$\begin{aligned} & \hline 0.8 \\ & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	Ω
RON (NO)	NO "ON" Resistance (Note 3)	$\begin{aligned} & \mid \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{GND} \text { to } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{IN}} \leq 100 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 1.0 \\ & 0.8 \\ & 0.8 \end{aligned}$		$\begin{aligned} & 1.0 \\ & 0.8 \\ & 0.8 \end{aligned}$		$\begin{aligned} & \hline 1.0 \\ & 1.0 \\ & 0.9 \\ & \hline \end{aligned}$	Ω
R FLAT (NC)	NC_On-Resistance Flatness (Notes 3, 5)	$\begin{aligned} & \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=0 \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 0.15 \\ & 0.15 \\ & 0.15 \end{aligned}$		$\begin{aligned} & 0.15 \\ & 0.15 \\ & 0.15 \end{aligned}$		$\begin{aligned} & \hline 0.15 \\ & 0.15 \\ & 0.15 \end{aligned}$	Ω
R FLAT (NO)	NO_On-Resistance Flatness (Notes 3, 5)	$\begin{aligned} & \hline \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=0 \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 0.35 \\ & 0.35 \\ & 0.35 \end{aligned}$		$\begin{aligned} & 0.35 \\ & 0.35 \\ & 0.35 \end{aligned}$		$\begin{aligned} & 0.35 \\ & 0.35 \\ & 0.35 \end{aligned}$	Ω
$\Delta \mathrm{R}_{\text {ON }}$	On-Resistance Match Between Channels (Notes 3 and 4)	$\begin{array}{\|l} \hline \mathrm{V}_{\text {IS }}=1.3 \mathrm{~V} ; \\ \mathrm{I}_{\text {COM }}=100 \mathrm{~mA} \\ \mathrm{~V}_{\text {IS }}=1.5 \mathrm{~V} ; \\ \mathrm{I}_{\text {COM }}=100 \mathrm{~mA} \\ \mathrm{~V}_{\text {IS }}=2.8 \mathrm{~V} ; \\ \mathrm{I}_{\text {COM }}=100 \mathrm{~mA} \end{array}$	$\begin{aligned} & 2.5 \\ & 3.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & \hline 0.18 \\ & 0.06 \\ & 0.06 \end{aligned}$		$\begin{aligned} & \hline 0.18 \\ & 0.06 \\ & 0.06 \end{aligned}$		$\begin{array}{\|l\|} \hline 0.18 \\ 0.06 \\ 0.06 \end{array}$	Ω
$\mathrm{I}_{\mathrm{NC} \text { (OFF) }}$ $\mathrm{I}_{\mathrm{NO}(\mathrm{OFF})}$	NC or NO Off Leakage Current (Figure 13) (Note 3)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.0 \\ & \mathrm{~V}_{\mathrm{COM}}=4.5 \mathrm{~V} \end{aligned}$	5.5	-1	1	-10	10	-100	100	nA
$\mathrm{I}_{\text {Com(ON) }}$	COM ON Leakage Current (Figure 13) (Note 3)	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}$ $\mathrm{V}_{\mathrm{NO}} 1.0 \mathrm{~V}$ or 4.5 V with V_{NC} floating or $\mathrm{V}_{\mathrm{NC}} 1.0 \mathrm{~V}$ or 4.5 V with V_{NO} floating $\mathrm{V}_{\text {COM }}=1.0 \mathrm{~V}$ or 4.5 V	5.5	-2	2	-20	20	-200	200	nA

3. Guaranteed by design. Resistance measurements do not include test circuit or package resistance.
4. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}(\mathrm{MAX})}-\mathrm{R}_{\mathrm{ON}(\mathrm{MIN})}$ between NC1 and NC2 or between NO1 and NO2.
5. Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.

AC ELECTRICAL CHARACTERISTICS (Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}$) (Typical characteristics are at $25^{\circ} \mathrm{C}$)

Symbol	Parameter	Test Conditions	V_{cc} (V)	$\begin{aligned} & V_{\text {IS }} \\ & \text { (V) } \end{aligned}$	Guaranteed Maximum Limit							Unit
					$-55^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$			$<85^{\circ} \mathrm{C}$		$<125^{\circ} \mathrm{C}$		
					Min	Typ	Max	Min	Max	Min	Max	
ton	Turn-On Time	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ (Figures 4 and 5)	$\begin{array}{\|l\|} \hline 2.5 \\ 3.0 \\ 5.0 \end{array}$	$\begin{aligned} & 1.3 \\ & 1.5 \\ & 2.8 \end{aligned}$			$\begin{aligned} & 60 \\ & 50 \\ & 30 \end{aligned}$		$\begin{aligned} & \hline 70 \\ & 60 \\ & 35 \end{aligned}$		$\begin{aligned} & \hline 70 \\ & 60 \\ & 35 \end{aligned}$	ns
toff	Turn-Off Time	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ (Figures 4 and 5)	$\begin{array}{\|l\|} \hline 2.5 \\ 3.0 \\ 5.0 \end{array}$	$\begin{aligned} & 1.3 \\ & 1.5 \\ & 2.8 \end{aligned}$			$\begin{aligned} & 50 \\ & 40 \\ & 30 \end{aligned}$		55 50 35		55 50 35	ns
$\mathrm{t}_{\text {BBM }}$	Minimum Break-Before-Make Time (Note 6)	$\begin{aligned} & \mathrm{V}_{\mathrm{IS}}=3.0 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \text { (Figure 3) } \end{aligned}$	3.0	1.5	2	15						ns

		Typical @ 25, $\mathbf{V}_{\text {cc }}=\mathbf{5 . 0} \mathbf{V}$	
C_{NC} Off	NC Off Capacitance, $\mathrm{f}=1 \mathrm{MHz}$	102	
C_{NO} Off	NO Off Capacitance, $\mathrm{f}=1 \mathrm{MHz}$	104	pF
C_{NC} On	NC On Capacitance, $\mathrm{f}=1 \mathrm{MHz}$	322	
C_{NO} On	NO On Capacitance, $\mathrm{f}=1 \mathrm{MHz}$	330	

ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted)

Symbol	Parameter	Condition	$\stackrel{\mathrm{v}_{\mathrm{cc}}}{\mathrm{~V}}$	Typical	Unit
				$25^{\circ} \mathrm{C}$	
BW	Maximum On-Channel -3dB Bandwidth or Minimum Frequency Response	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{dBm}$ $\mathrm{V}_{\text {IN }}$ centered between V_{CC} and GND (Figure 6)	$\begin{aligned} & \hline 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \hline 6.5 \\ & 9.5 \end{aligned}$	MHz
$\mathrm{V}_{\text {ONL }}$	Maximum Feed-through On Loss	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{dBm}$ @ 100 kHz to 50 MHz $\mathrm{V}_{\text {IN }}$ centered between V_{CC} and GND (Figure 6)	3.0	-0.05	dB
V ISO	Off-Channel Isolation (Note 7)	$\mathrm{f}=100 \mathrm{kHz} ; \mathrm{V}_{\mathrm{IS}}=1 \mathrm{~V}$ RMS; $\mathrm{C}_{\mathrm{L}}=5 \mathrm{nF}$ $\mathrm{V}_{\text {IN }}$ centered between V_{CC} and GND (Figure 6)	3.0	-65	dB
Q	Charge Injection Select Input to Common I/O (Figures 10 and 11)	$\begin{aligned} & \mathrm{V}_{I N}=\mathrm{V}_{\mathrm{CC} \text { to }} \mathrm{GND}, \mathrm{R}_{\mathrm{IS}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} \\ & \mathrm{Q}=\mathrm{C}_{\mathrm{L}}-\Delta \mathrm{V}_{\text {OUT }} \text { (Figure 7) } \end{aligned}$	3.0	15	pC
THD	Total Harmonic Distortion THD + Noise (Figure 9)	$\begin{aligned} & \mathrm{F}_{\text {IS }}=20 \mathrm{~Hz} \text { to } 100 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=\mathrm{R}_{\text {gen }}=600 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{~V}_{\text {IS }}=1 \mathrm{~V} \text { RMS } \end{aligned}$	3.0	0.14	\%
VCT	Channel-to-Channel Crosstalk	$\mathrm{f}=100 \mathrm{kHz} ; \mathrm{V}_{\mathrm{IS}}=1 \mathrm{VRMS}, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega$ V_{IN} centered between V_{CC} and GND (Figure 6)	3.0	-83	dB

6. $-55^{\circ} \mathrm{C}$ specifications are guaranteed by design.
7. Off-Channel Isolation $=20 \log 10(\mathrm{Vcom} / \mathrm{Vno})($ See Figure 6$)$.

Figure 3. $\mathrm{t}_{\text {BBM }}$ (Time Break-Before-Make)

Figure 4. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

Figure 5. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. $\mathrm{V}_{\text {ISO }}$, Bandwidth and $\mathrm{V}_{\text {ONL }}$ are independent of the input signal direction.
$\mathrm{V}_{\text {ISO }}=$ Off Channel Isolation $=20$ Log $\left(\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz
$\mathrm{V}_{\mathrm{ONL}}=$ On Channel Loss $=20 \log \left(\frac{\mathrm{~V}_{\mathrm{OUT}}}{\mathrm{V}_{\text {IN }}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz to 50 MHz
Bandwidth $(B W)=$ the frequency 3 dB below $\mathrm{V}_{\text {ONL }}$
$\mathrm{V}_{\mathrm{CT}}=$ Use $\mathrm{V}_{\text {ISO }}$ setup and test to all other switch analog input/outputs terminated with 50Ω

Figure 6. Off Channel Isolation/On Channel Loss (BW)/Crosstalk (On Channel to Off Channel)/ $V_{\text {ONL }}$

Figure 7. Charge Injection: (Q)

Figure 8. Total Harmonic Distortion Plus Noise Versus Frequency

Figure 9. Voltage in Threshold on Logic Pins

Figure 11. T-on / T-off Time versus Temperature

Figure 13. NO/NC Current Leakage Off and On, $\mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V}$

Figure 10. Charge Injection versus $\mathrm{V}_{\text {is }}$

Figure 12. T-on / T-off Time versus Temperature

Figure 14. Icc Current Leakage versus Temperature $\mathrm{V}_{\mathrm{Cc}}=5.5 \mathrm{~V}$

Figure 15. NC On-Resistance versus COM Voltage

Figure 17. NC On-Resistance versus COM Voltage

Figure 19. NC On-Resistance versus COM Voltage

Figure 16. NO On-Resistance versus COM Voltage

Figure 18. NO On-Resistance versus COM Voltage

Figure 20. NC On-Resistance versus COM Voltage

NLAS4684

Figure 21. NC On-Resistance versus COM Voltage

FREQUENCY (MHz)
Figure 23. NC Bandwidth and Phase Shift versus Frequency

Figure 22. NO On-Resistance versus COM Voltage

Figure 25. NC Off Isolation and Crosstalk

FREQUENCY (MHz)
Figure 24. NO Bandwidth and Phase Shift versus Frequency

Figure 26. NO Off Isolation and Crosstalk

ORDERING INFORMATION

Device	Package	Shipping \dagger
NLAS4684FCT1	Microbump-10	$3000 /$ Tape \& Reel
NLAS4684FCT1G	Microbump-10 (Pb-Free)	$3000 /$ Tape \& Reel
NLAS4684FCTCG	Microbump-10 (Pb-Free)	$3000 /$ Tape \& Reel
NLAS4684MNR2	DFN10	$3000 /$ Tape \& Reel
NLAS4684MNR2G	DFN10 (Pb-Free)	$3000 /$ Tape \& Reel
NLAS4684MR2	Micro10	$4000 /$ Tape \& Reel
NLAS4684MR2G	Micro10 (Pb-Free)	$4000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

SCALE 2:1

sIde VIEW

DETAIL

GENERIC
MARKING DIAGRAM*

${ }^{\circ}$ XXXXX XXXXX ALYW:

XXXXX = Specific Device Code
A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week

- = Pb-Free Package
(Note: Microdot may be in either location)

DFN10, 3x3, 0.5P
CASE 485C
ISSUE F
DATE 16 DEC 2021
NDTES:

1. DIMENSION AND TQLERANCING PER ASME Y14.5, 2009.
2. CONTRDLLING DIMENSION: MILLIMETERS
3. DIMENSION b APPLIES TI PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 MM FROM THE TERMINAL TIP.
4. CDPLANARITY APPLIES TI THE EXPOSED PAD AS WELL AS THE TERMINALS.
5. TERMINAL b MAY HAVE MDLD CDMPDUND MATERIAL ALDNG SIDE EDGE. mald flash may nat exceed 30 micrans anta battam surface af TERMINAL.
6. FER DEVICE \quad PPN CZNTAINING W IPTION, DETAIL A AND DETAIL B alternate constructions are nat applicable. wettable flank construction is detail b as shown an side view of package.

	DIM	MILLIMETERS		
		MIN.	NDM.	MAX.
	A	0.80	0.90	1.00
	Al	0.00	---	0.05
	A3	0.20 REF		
	b	0.18	0.23	0.30
	D	2.90	3.00	3.10
TE	D2	2.40	2.50	2.60
DETAIL B	E	2.90	3.00	3.10
ALTERNATE CINSTRUCTİN	E2	1.70	1.80	1.90
	e	0.50 BSC		
EXPDSED	K	0.20 REF		
CIPPER	L	0.30	0.40	0.50
	L1	--	---	0.03

DETAIL B
WETTABLE FLANK CONSTRUCTICN

alternate a-1
DETAIL A
alternate construction

	RECDMMENDED
MDUNTING FDDTPRINT	

RECDMMENDED
MDUNTING FADTPRINT
dational information on our Pb-Free strategy and soldering details, please download the UN Semiconductor Soldering and Mounting Techniques Reference Manual, SULDERRM/D.

DOCUMENT NUMBER:	98AON03161D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	DFN10, 3X3 MM, 0.5 MM PITCH		PAGE 1 OF 1

[^1]

10 PIN FLIP-CHIP
CASE 489AA-01
ISSUE A
DATE 04 MAY 2004

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
. CONTROLLING DIMENSION MILLIMETERS.
2. COPLANARITY APPLIES TO SPHERICAL CROWNS OF SOLDER BALLS.

DIM	MILLIMETERS	
	MIN	MAX
A	---	0.650
A1	0.210	0.270
A2	0.280	0.380
D	1.965	
BSC		
E	1.465	
b	0.250	
e	0.500	
DSC	BSC	
E1	1.500	
BSC		

GENERIC MARKING DIAGRAM*

xxxx	$=$ Specific Device Code
YY	$=$ Year
WW	$=$ Work Week

*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " $\mathrm{\nabla}$ ", may or may not be present.

| DOCUMENT NUMBER: | 98AON12946D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | 10 PIN FLIP-CHIP | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

Micro10
CASE 846B-03
ISSUE D

SOLDERING FOOTPRINT

Micro10

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982 .
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION "A" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION "B" DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
5. 846B-01 OBSOLETE. NEW STANDARD 846B-02

DIM	MILLIMETERS		INCHES	
	MIN	max	MIN	max
A	2.90	3.10	0.114	0.122
B	2.90	3.10	0.114	0.122
c	0.95	1.10	0.037	0.043
D	0.20	0.30	0.008	0.012
G			0.02	
H	0.05	0.15	0.002	0.006
J	0.10	0.21	0.004	0.008
K	4.75	5.05	0.187	0.199
L	0.40	0.70	0.016	0.028

GENERIC MARKING DIAGRAM*

xxxx	$=$ Device Code
A	$=$ Assembly Location
Y	$=$ Year
W	$=$ Work Week
-	$=$ Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot """, may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98AON03799D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | Micro10 | PAGE 1 OF 1 |

onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

[^0]: 2. Guaranteed by design.
[^1]: onsemi and OnSemi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

