CHANGE NOTIFICATION

April 08, 2014

Dear Sir/Madam: PCN# 040814

Subject: Notification of Change to LTC6090 Die and Datasheet

Please be advised that Linear Technology Corporation has made minor changes to the die and datasheet of the subject product to improve the product performance.

In order to improve manufacturability, the datasheet has been changed and affected parameters are shown in the attached redlined specifications. In addition, we have changed the mask set to achieve the better data sheet performance, and in connection with releasing the new dual version LTC6091.

These changes were qualified by performing characterization over the full operating junction temperature range and through rigorous engineering bench evaluations. In addition, the product successfully completed 1000 hours of HTOL stress. Product built using the new die and tested to the updated specifications will be shipped after June 09, 2014.

Should you have any further questions, please feel free to contact me at 408-432-1900 ext. 2077, or by email at JASON.HU@LINEAR.COM. If I do not hear from you by June 09, 2014, we will consider this change to be approved by your company.

Sincerely,

Jason Hu Quality Assurance Engineer

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING*	PACKAGE DESCRIPTION	JUNCTION TEMPERATURE RANGE
LTC6090CS8E#PBF	LTC6090CS8E#TRPBF	6090	8-Lead Plastic SO	0°C to 70°C
LTC6090IS8E#PBF	LTC6090IS8E#TRPBF	6090	8-Lead Plastic SO	-40°C to 85°C
LTC6090HS8E#PBF	LTC6090HS8E#TRPBF	6090	8-Lead Plastic SO	-40°C to 125°C
LTC6090CFE#PBF	LTC6090CFE#TRPBF	6090FE	16-Lead Plastic TSSOP	0°C to 70°C
LTC6090IFE#PBF	LTC6090IFE#TRPBF	6090FE	16-Lead Plastic TSSOP	-40°C to 85°C
LTC6090HFE#PBF	LTC6090HFE#TRPBF	6090FE	16-Lead Plastic TSSOP	-40°C to 125°C

Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container. Consult LTC Marketing for information on non-standard lead based finish parts.

For more information on lead free part marking, go to: http://www.linear.com/leadfree/For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

ELECTRICAL CHARACTERISTICS The ullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_J = 25^{\circ}C$. Test conditions are $V^+ = 70V$, $V^- = -70V$, $V_{CM} = V_{OUT} = 0V$, $V_{\overline{OD}} = 0$ pen unless otherwise noted.

				C-, I-SUFFIXES			ŀ	H-SUFFIX			
SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	UNITS	
V _{OS}	Input Offset Voltage		•		±330 ±330	±1000 ±1600	1250	±330 ±330	±1000 ±1600	μV 1250 μV	
$\Delta V_{OS}/\Delta T$	Input Offset Voltage Drift	$T_A = 25^{\circ}C, \ \Delta T_J = 70^{\circ}C$	×	-5	4±3	5	-5	4±3	5	μV/°C	
I _B	Input Bias Current (Note 6)	Supply Voltage = ±70V Supply Voltage = ±15V Supply Voltage = ±15V	•		3 3 0.3	50		3 30.3	800	pA pA pA	
I _{OS}	Input Offset Current (Note 6)	Supply Voltage = ±15V	•		0.5	30		0.5	120	pA pA	
e _n	Input Noise Voltage Density	f = 1kHz f = 10kHz			14 11			14 11		nV/√Hz nV/√Hz	
	Input Noise Voltage	0.1Hz to 10Hz			3.5			3.5		μV _{P-P}	
in	Input Noise Current Density				1			1		fA/√Hz	
V _{CM}	Input Common Mode Range	Guaranteed by CMRR	•	V-+3V	±68	V+-3V	V-+3V	±68	V+-3V	V	
C _{IN}	Common Mode Input Capacitance				9			9		pF	
C _{DIFF}	Differential Input Capacitance				5			5		pF	
CMRR	Common Mode Rejection Ratio	$V_{CM} = -67V \text{ to } 67V$	•	105 130 100 126	125 >1	140	105 130 100 120) 125 >	140	dB dB	
PSRR	Power Supply Rejection Ratio	$V_S = \pm 4.75 V \text{ to } \pm 70 V$	•	105 112 100 106	118 >1	120	105 112 100 106	2 118 >	120	dB dB	
V _{OUT}	Output Voltage Swing High (Referred to V+)	No Load source = 1mA source = 10mA	•		25 10 100 50 750 45	2 00 1		25 1 100 5 750 4		25 mV 40 mV 000 mV	
	Output Voltage Swing Low (Referred to V ⁻)	No Load sink = 1mA sink = 10mA	•		10 40 250	25 80 600		10 40 250	25 80 600	m\ m\ m\	
A _{VOL}	Large-Signal Voltage Gain	R _L = 10k, V _{OUT} from -60V to 60V	•	5001000 4001000		10000	5001000 400100		>10000	V/mV V/mV	

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_J = 25^{\circ}C$. Test conditions are $V^+ = 70V$, $V^- = -70V$, $V_{CM} = V_{OUT} = 0V$, $V_{\overline{0D}} = 0$ pen unless otherwise noted.

				C-, I-SUFFIXES			ŀ			
SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	UNITS
I _{SC}	Output Short-Circuit Current (Source and Sink)	Supply Voltage = ±70V Supply Voltage = ±15V	•	15 20	50 90		15 20	50 90		mA mA
SR	Slew Rate	$A_V = -2, R_L = 10k$	•	810	19 21		8-9	19 21		V/µs V/µs
GBW	Gain-Bandwidth Product	f _{TEST} = 20kHz, R _L = 10k	•	5 -5.5	10 12		4 5	10 12		MHz MHz
Φ_{M}	Phase Margin	$R_L = 10k, C_L = 50pF$			52 60			52 60		Deg
FPBW	Full Power Bandwidth	$V_0 = 125V_{P-P}$	•	25 20	40		25 20 18	40		kHz kHz
ts	Settling Time 0.1%	V _{STEP} = 1V, Av = 1, R _L = 10k			2			2		μs
Is	Supply Current	No Load	•		2.7 2.8	3.9 4.2 4.3		2.7 2.8	3.9 4.5 4.3	mA mA
$\overline{V_S}$	Supply Voltage Range	Guaranteed by the PSRR Test	•	9.5		140	9.5		140	V
OD _H	OD Pin Voltage, Referenced to COM Pin	V _{IH} V _{IL}	•	COM+ 2.5 V 1.8	C	OM + 0.65V	COM+ 2.5 V 1.8	CO)M+0.65V	V
	Amplifier DC Output Impedance, Disabled	DC, OD = COM			450 > 10		-450 > 10			M#Ω
COM _{CM}	COM Pin Voltage Range		•	V-		V+-5	V-		V ⁺ – 5	V
COM _V	COM Pin Open Circuit Voltage		•	20 17	21	22.5 25	20 17	21	22.5 25	V
COMR	COM Pin Resistance		•	500	665	850	500	665	850	kΩ
TEMP _F	Die Temperature Where TFLAG Is Active		×		145			145		°C
TEMP _{HYS}	TFLAG Output Hysteresis		×		5			5		°C
TFLAG	TFLAG Pull-Down Current	TFLAG Output Voltage = 0V	•	70	120 200	170 330	70	120 200	170 330	μА

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Note 2: A heat sink may be required to keep the junction temperature below the absolute maximum rating when the output is shorted indefinitely.

Note 3: The LTC6090C/LTC6090I are guaranteed functional over the operating junction temperature range -40°C to 85°C. The LTC6090H is guaranteed functional over the operating junction temperature range -40°C to 125°C. Specifying the junction temperature range as an operating condition is applicable for devices with potentially significant quiescent power dissipation.

Note 4: The LTC6090C is guaranteed to meet specified performance from 0°C to 70°C. The LTC6090C is designed, characterized, and expected to meet specified performance from -40°C to 85°C but is not tested or QA sampled at these temperatures. The LTC6090I is guaranteed to meet specified performance from -40°C to 85°C. The LTC6090H is guaranteed to meet specified performance from -40°C to 125°C.

Note 5: This device includes over temperature protection that is intended to protect the device during momentary overload conditions. Operation above the specified maximum operating junction temperature is not recommended.

Note 6: Input bias and offset current is production tested with ±15V supplies. See Typical Performance Characteristics curves of actual typical performance over full supply range.

6090fb

