74FST3257

Quad 2:1 Multiplexer/ Demultiplexer Bus Switch

The ON Semiconductor 74FST3257 is a quad 2:1, high performance multiplexer/demultiplexer bus switch. The device is CMOS TTL compatible when operating between 4 and 5.5 Volts. The device exhibits extremely low R_{ON} and adds nearly zero propagation delay. The device adds no noise or ground bounce to the system.

Features

- $\mathrm{R}_{\mathrm{ON}}<4 \Omega$ Typical
- Less Than 0.25 ns-Max Delay Through Switch
- Nearly Zero Standby Current
- No Circuit Bounce
- Control Inputs are TTL/CMOS Compatible
- Pin-For-Pin Compatible With QS3257, FST3257, CBT3257
- All Popular Packages: SOIC-16, TSSOP-16, QFN16
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

Figure 1. 16-Lead Pinout Diagrams

\mathbf{S}	$\overline{\mathbf{O E}}$	Function
X	H	Disconnect
L	L	$\mathrm{A}=\mathrm{B}_{1}$
H	L	$\mathrm{A}=\mathrm{B}_{2}$

Figure 2. Truth Table

ON Semiconductor ${ }^{\circledR}$

www.onsemi.com

PIN NAMES

Pin	Description
$\mathrm{OE}_{1}, \mathrm{OE}_{2}$	Bus Switch Enables
$\mathrm{S}_{0}, \mathrm{~S}_{1}$	Select Inputs
A	Bus A
$\mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3}, \mathrm{~B}_{4}$	Bus B

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

Figure 3. Logic Diagram

ORDERING INFORMATION

Device Order Number	Package	Shipping ${ }^{\dagger}$
74FST3257DR2G	SOIC-16 (Pb-Free)	2500 Units / Tape \& Reel
NLV74FST3257DR2G*	TSSOP-16 (Pb-Free)	2500 Units / Tape \& Reel
74FST3257DTR2G	QFN16 (Pb-Free)	3000 Units / Tape \& Reel
74FST3257MNTWG	(PN	

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

MAXIMUM RATINGS

Symbol	Parameter	Value	Units
V_{CC}	DC Supply Voltage	-0.5 to +7.0	V
V_{1}	DC Input Voltage	-0.5 to +7.0	V
V_{O}	DC Output Voltage	-0.5 to +7.0	V
IIK	DC Input Diode Current $V_{1}<$ GND	-50	mA
Iok	DC Output Diode Current $\mathrm{V}_{\mathrm{O}}<$ GND	-50	mA
10	DC Output Sink Current	128	mA
ICC	DC Supply Current per Supply Pin	± 100	mA
$\mathrm{I}_{\text {GND }}$	DC Ground Current per Ground Pin	± 100	mA
TSTG	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds	260	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature Under Bias	+150	${ }^{\circ} \mathrm{C}$
θ_{JA}		$\begin{aligned} & 125 \\ & 170 \\ & \mathrm{~N} / \mathrm{A} \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
MSL	Moisture Sensitivity	Level 1	
F_{R}	Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	
$\mathrm{V}_{\text {ESD }}$	ESD Withstand Voltage Human Body Model (Note 1) Machine Model (Note 2) Charged Device Model (Note 3)	$\begin{aligned} & >2000 \\ & >200 \\ & \text { N/A } \end{aligned}$	V
LLatchup	Latchup Performance Above V_{CC} and Below GND at $85^{\circ} \mathrm{C}$ (Note 4)	± 500	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Tested to EIA/JESD22-A114-A.
2. Tested to EIA/JESD22-A115-A.
3. Tested to JESD22-C101-A.
4. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Units
V_{CC}	Supply Voltage Operating, Data Retention Only	4.0	5.5	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage (Note 5)	0	5.5	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage (HIGH or LOW State)	0	5.5	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Free-Air Temperature	-40	+85	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input Transition Rise or Fall Rate Switch I/O	Switch Control Input $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$	0	DC 5

5. Unused control inputs may not be left open. All control inputs must be tied to a high or low logic input voltage level.

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Conditions	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units
				Min	Typ*	Max	
V_{IK}	Clamp Diode Voltage	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$	4.5			-1.2	V
V_{IH}	High-Level Input Voltage		4.0 to 5.5	2.0			V
V_{IL}	Low-Level Input Voltage		4.0 to 5.5			0.8	V
1	Input Leakage Current	$0 \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}$	5.5			± 1.0	$\mu \mathrm{A}$
loz	Off-State Leakage Current	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\mathrm{CC}}$	5.5			± 1.0	$\mu \mathrm{A}$
R_{ON}	Switch On Resistance (Note 6)	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=64 \mathrm{~mA}$	4.5		4	7	Ω
		$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=30 \mathrm{~mA}$	4.5		4	7	
		$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$	4.5		8	15	
		$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$	4.0		11	20	
ICC	Quiescent Supply Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND, I IOUT $=0$	5.5			3	$\mu \mathrm{A}$
$\Delta \mathrm{I}_{\mathrm{CC}}$	Increase In ICC per Input	One input at 3.4 V , Other inputs at V_{CC} or GND	5.5			2.5	mA

*Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
6. Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B) pins.

AC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Conditions	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{RU}=\mathrm{RD}=500 \Omega \end{gathered}$				Units
			$\mathrm{V}_{\mathrm{CC}}=4.5-5.5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{cc}}=4.0 \mathrm{~V}$		
			Min	Max	Min	Max	
$t_{\text {PHL }}$, tpLH	Prop Delay Bus to Bus (Note 7)	$\mathrm{V}_{1}=$ OPEN		0.25		0.25	ns
	Prop Delay, Select to Bus A		1.0	4.7		5.2	
$\begin{aligned} & \mathrm{t}_{\mathrm{tpzH}}, \\ & \mathrm{t}_{\text {PZL }} \end{aligned}$	Output Enable Time, Select to Bus B	$\begin{aligned} & \hline V_{I}=7 \mathrm{~V} \text { for } \mathrm{t}_{\text {PZL }} \\ & \mathrm{V}_{\mathrm{I}}=\text { OPEN for } \mathrm{t}_{\text {PZH }} \end{aligned}$	1.0	5.2		5.7	ns
	Output Enable Time, IoE to Bus A, B		1.0	5.1		5.6	
$\begin{aligned} & \text { tpHZ, } \\ & \mathrm{t}_{\text {PLZ }} \end{aligned}$	Output Disable Time, Select to Bus B	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for } \mathrm{tpLz} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for tPHZ } \end{aligned}$	1.0	5.2		5.5	ns
	Output Disable Time, IoE to Bus A, B		1.0	5.5		5.5	

7. This parameter is guaranteed by design but is not tested. The bus switch contributes no propagation delay other than the RC delay of the typical On resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance).

CAPACITANCE (Note 8)

Symbol	Parameter	Conditions	Typ	Max	Units
C_{IN}	Control Pin Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	3		pF
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	A Port Input/Output Capacitance	$\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{OE}}=5.0 \mathrm{~V}$	7		pF
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	B Port Input/Output Capacitance	$\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{OE}}=5.0 \mathrm{~V}$	5		pF

8. $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$, Capacitance is characterized but not tested.

AC Loading and Waveforms

NOTES:

1. Input driven by 50Ω source terminated in 50Ω.
2. CL includes load and stray capacitance.
${ }^{*} \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
Figure 4. AC Test Circuit

Figure 5. Propagation Delays

Figure 6. Enable/Disable Delays

QFN16, 2.5x3.5, 0.5P
CASE 485AW-01
DATE 11 DEC 2008
SCALE 2:1

\section*{ISSUE O}
 ISSUE O

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSIONS b APPLIES TO PLATED

TERMINAL AND IS MEASURED BETWEEN
0.15 AND 0.30 MM FROM TERMINAL.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

DIM	MILLIMETERS	
	MIN	MAX
A	0.80	1.00
A1	0.00	0.05
A3	0.20 REF	
b	0.20	0.30
D	2.50 BSC	
D2	0.85	1.15
E	3.50 BSC	
E2	1.85	2.15
e	0.50 BSC	
K	0.20	---
L	0.35	0.45
L1	---	0.15

GENERIC MARKING

DIAGRAM*

XXXX
ALYW

$\begin{array}{ll}\text { XXXX } & =\text { Specific Device Code } \\ \text { A } & =\text { Assembly Location } \\ \text { L } & =\text { Wafer Lot } \\ \text { Y } & =\text { Year } \\ \text { W } & =\text { Work Week } \\ \text { - } & \text { = Pb-Free Package }\end{array}$
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " * ", may or may not be present.

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98AON36347E | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | QFN16, 2.5X3.5, 0.5P | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.

SOIC-16
CASE 751B-05
ISSUE K
SCALE 1:1

| DOCUMENT NUMBER: | 98ASB42566B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-16 | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

TSSOP-16
CASE 948F-01
ISSUE B
DATE 19 OCT 2006

SCALE 2:1

| DOCUMENT NUMBER: | 98ASH70247A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-16 | PAGE 1 OF 1 |

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. Typical parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Email Requests to: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

