MA3075WALT1G, SZMA3075WALT1G

Zener ESD Protection Diode

SOT-23 Dual Common Anode Zeners for ESD Protection

These dual monolithic silicon zener diodes are designed for applications requiring transient overvoltage protection capability. They are intended for use in voltage and ESD sensitive equipment such as computers, printers, business machines, communication systems, medical equipment and other applications. Their dual junction common anode design protects two separate lines using only one package. These devices are ideal for situations where board space is at a premium.

Features

- SOT-23 Package Allows Two Separate Unidirectional Configurations
- Low Leakage < $1 \mu \mathrm{~A} @ 5.0 \mathrm{~V}$
- Breakdown Voltage: 7.2-7.9 V @ 5 mA
- Low Capacitance (80 pF typical @ $0 \mathrm{~V}, 1 \mathrm{MHz}$)
- ESD Protection Meeting: 16 kV Human Body Model 30 kV Air and Contact Discharge
- SZ Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Mechanical Characteristics:

- Void Free, Transfer-Molded, Thermosetting Plastic Case
- Corrosion Resistant Finish, Easily Solderable
- Package Designed for Optimal Automated Board Assembly
- Small Package Size for High Density Applications

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Power Dissipation @ 100 $\mu \mathrm{s}$ (Note 1)	P_{pk}	15	W
Steady State Power Dissipation	P_{D}	225	mW
Derate above $25^{\circ} \mathrm{C}$ (Note 2)		1.8	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Thermal Resistance, Junction-to-Ambient	$\mathrm{R}_{\theta \mathrm{JA}}$	556	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Junction Temperature	$\mathrm{R}_{\theta \mathrm{JA}}$	417	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating Junction and Storage	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Temperature Range			
ESD Discharge	V_{PP}		kV
MIL STD 883C - Method 3015-6		16	
IEC61000-4-2, Air Discharge		30	
IEC61000-4-2, Contact Discharge		30	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Non-repetitive 100μ s pulse width
2. Mounted on FR-5 Board $=1.0 \times 0.75 \times 0.062$ in.

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

PIN 1. CATHODE
2. CATHODE
3. ANODE

SOT-23 CASE 318 STYLE 12

MARKING DIAGRAM

7W5 = Specific Device Code
M = Date Code*

- = Pb-Free Package
(Note: Microdot may be in either location)
*Date Code orientation and/or overbar may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
MA3075WALT1G	SOT-23 $($ Pb-Free $)$	$3000 /$ Tape \& Reel
SZMA3075WALT1G	SOT-23 (Pb-Free)	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MA3075WALT1G, SZMA3075WALT1G

ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Forward Voltage	V_{F}	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		0.8	0.9	V
Zener Voltage ${ }^{\star 2}$	$\mathrm{~V}_{\mathrm{Z}}$	$\mathrm{I}_{\mathrm{Z}}=5 \mathrm{~mA}$	7.2	7.5	7.9	V
Operating Resistance	R_{ZK}	$\mathrm{I}_{\mathrm{Z}}=0.5 \mathrm{~mA}$			120	Ω
	R_{Z}	$\mathrm{I}_{\mathrm{Z}}=5 \mathrm{~mA}$		6	15	Ω
	$\mathrm{I}_{\mathrm{R} 1}$	$\mathrm{~V}_{\mathrm{R}}=5 \mathrm{~V}$			1	$\mu \mathrm{~A}$
	$\mathrm{I}_{\mathrm{R} 2}$	$\mathrm{~V}_{\mathrm{R}}=6.5 \mathrm{~V}$			60	$\mu \mathrm{~A}$
Temperature Coefficient of Zener Voltage*3	S_{Z}	$\mathrm{I}_{\mathrm{Z}}=5 \mathrm{~mA}$	2.5	4.0	5.3	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Terminal Capacitance	C_{t}	$\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}$		80		pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Uni-Directional

Figure 1. Steady State Power Derating Curve

Figure 3. Pulse Rating Curve

Figure 2. $8 \times \mathbf{2 0} \boldsymbol{\mu s}$ Pulse Waveform

Figure 4. Forward Current versus Forward Voltage

MA3075WALT1G, SZMA3075WALT1G

Figure 5. Forward Voltage versus Temperature

Figure 7. Leakage Current versus Temperature

Figure 6. Leakage Current versus Reverse Voltage

Figure 8. Zener Current versus Zener Voltage

Figure 9. Capacitance

Figure 10. Operating Resistance versus Zener Current

SOT-23 (TO-236)
CASE 318-08
ISSUE AS
DATE 30 JAN 2018

SCALE 4:1

NOTES:
IMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
. CONTROLLING DIMENSION: MILLIMETERS.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
A	0.89	1.00	1.11	0.035	0.039	0.044
A1	0.01	0.06	0.10	0.000	0.002	0.004
b	0.37	0.44	0.50	0.015	0.017	0.020
\mathbf{c}	0.08	0.14	0.20	0.003	0.006	0.008
D	2.80	2.90	3.04	0.110	0.114	0.120
E	1.20	1.30	1.40	0.047	0.051	0.055
e	1.78	1.90	2.04	0.070	0.075	0.080
L	0.30	0.43	0.55	0.012	0.017	0.022
L1	0.35	0.54	0.69	0.014	0.021	0.027
$\mathbf{H E}_{\mathbf{E}}$	2.10	2.40	2.64	0.083	0.094	0.104
T	0°	---	10°	0°	---	10°

GENERIC
MARKING DIAGRAM*

RECOMMENDED SOLDERING FOOTPRINT

DIMENSIONS: MILLIMETERS

XXX = Specific Device Code
M = Date Code

- = Pb-Free Package
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " \quad ", may or may not be present.

[^0] rights of others.

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. Typical parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Email Requests to: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

[^0]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

