CHANGE NOTIFICATION

March 07, 2014

Dear Sir/Madam: PCN# 030714

Subject: Notification of Change to LTC3621/LTC3621-2 Datasheet

Please be advised that Linear Technology Corporation has made changes to the LTC3621 product datasheet in order to reflect the following:

Frequency synchronization capability and performance is now documented and guaranteed. The MODE pin has been renamed MODE/SYNC accordingly. Fixed output voltage options are now offered. Several parametric specifications have been adjusted in order to improve manufacturability. These changes are shown on the attached pages of the marked-up datasheet. Product shipped after May 8, 2014 will be tested to the new limits.

Should you have any further questions, please feel free to contact me at 408-432-1900 ext. 2077, or by e-mail at JASON.HU@linear.com. If I do not hear from you by May 8, 2014, we will consider this change approved by your company.

Sincerely,

Jason Hu Quality Assurance Engineer

LTC3621/LTC3621-2

17V, 1A Synchronous Step-Down Regulator with 3.5µA Quiescent Current

FEATURES

- Wide V_{IN} Range: 2.7V to 17V
- Wide V_{OUT} Range: 0.6V to V_{IN}
- 95% Max Efficiency
- Low I₀ < 3.5µA, Zero-Current Shutdown
- Constant Frequency (1MHz/2.25MHz)
- Full Dropout Operation with Low Io.
- 1A Rated Output Current
- ±1% Output Voltage Accuracy
- Current Mode Operation for Excellent Line and Load
 Transient Response
 Synchronizable to External Clock
- Pulse-Skipping, Forced Continuous, Burst Mode[®] Operation
- Internal Compensation and Soft-Start
- Overtemperature Protection
- Compact 6-Lead DFN (2mm × 3mm) Package or 8-Lead MSOPE Package with Power Good Output and Independent SGND Pin

APPLICATIONS

Thermally-Enhanced MS8E

- Portable-Handheld Scanners
- Industrial and Embedded Computing
- Automotive Applications
- Emergency Radio

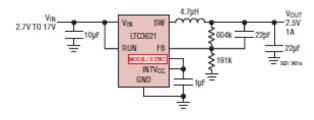
DESCRIPTION

The LTC®3621/LTC3621-2 is a high efficiency 17V, 1A synchronous monolithic step-down regulator. The switching frequency is fixed to 1MHz or 2.25MHz. The regulator features ultralow quiescent current and high efficiencies over a wide V_{OUT} range.

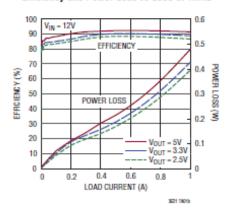
The step-down regulator operates from an input voltage range of 2.7V to 17V and provides an adjustable output range from 0.6V to V_{IN} while delivering up to 1A of output current. A user-selectable mode input is provided to allow the user to trade off ripple noise for light load efficiency; Burst Mode operation provides the highest efficiency at light loads, while pulse-skipping mode provides the low-

est voltage ripple. The MODE pin can also be used to allow the user to sync the switching frequency to an external clock

LC3621 Options


PART NAME		FREQUENCY	V _{OUT}
LTC3621		1.00MHz	Adjustable
LTC3621-2	7	2.25MHz	Adjustable

LT, LT, LTC, LTM, Burst Mod and Hot Swap is a trademark property of their respective o 6498466, 6611131, 6177787


1	LTC3621 Options		
	PART NAME	FREQUENCY	VOUT
i	LTC3621	1.00MHz	Adjustable
	LTC3621-3.3	1.00MHz	3.3V
	LTC3621-5	1.00MHz	5V
	LTC3621-2	2.25MHz	Adjustable
ı	LTC3621-23.3	2.25MHz	3.3V
	LTC3621-25	2.25MHz	5V

TYPICAL APPLICATION

2.5V V_{OUT} with 400mA Burst Clamp, f_{SW} = 1MHz

Efficiency and Power Loss vs Load at 1MHz

36211

TUNEAR

For more information www.linear.com/LTC3621

ABSOLUTE MAXIMUM RATINGS (Note 1)

V _{IN} Voltage (Note 2)	INTV _{CC} , PGOOD Voltages 6V to -0.3V
SW Voltage DCV _{IN} + 0.3V to -0.3V	Operating Junction Temperature Range
Transient (Note 2)19V to 2.0V	(Notes 3, 6)40°C to 125°C
RUN VoltageV _{IN} to -0.3V	Storage Temperature Range65°C to 125°C
MODE, FB Voltages 6V to -0.3V	
MODE/SYNC	

PIN CONFIGURATION

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING*	PACKAGE DESCRIPTION	TEMPERATURE RANGE			
LTC3621EDCB#PBF	LTC3621EDCB#TRPBF	LGDG	6-Lead (2mm × 3mm) Plastic DFN	-40°C to 125°C			
LTC3621IDCB#PBF	LTC36211LCP#TRPBF	LGDG	6-Lead (2mm × 3mm) Plastic DFN	-40°C to 125°C			
LTC3621EMS8E#PBF	LTC3621EMS8E#TSee	Next Page for	0.1 1.01 11 14000	-40°C to 125°C			
LTC3621IMS8E#PBF	LTC3621IMS8E#TFUpda	ted Table wit	h	-40°C to 125°C			
LTC3621EDCB-2#PBF			tions (E/I Grades)	-40°C to 125°C			
LTC3621IDCB-2#PBF	LTC3621IDCB-2#TRPBF	LGHY	6-Lead (2mm × 3mm) Plastic DFN	-40°C to 125°C			
LTC3621EMS8E-2#PBF	LTC3621EMS8E-2#TRPBF	LTGHZ	TGHZ 8-Lead Plastic MSOP				
LTC3621IMS8E-2#PBF	LTC3621IMS8E-2#TRPBF	LTGHZ	8-Lead Plastic MSOP	-40°C to 125°C			

Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping contains.

Consult LTC Marketing for information on non-standard lead based finish parts.

For more information on lead free part marking, go to: http://www.linear.com/leadfree/

For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the specified operating junction temperature range, otherwise specifications are at $T_J = 25^{\circ}$ C. (Note 3) $V_{IN} = 12$ V, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
V _{IN}	Operating Voltage		2.7		17	V
V _{OUT}	Operating Voltage		0.6		V _{IN}	V
I _{VIN}	Input Quiescent Current	Shutdown Mode, V _{RUN} = 0V Burst Mode Operation Forced Continuous Mode (Note 4), V _{FB} < 0.6V		0.1 3.5 1.5	1.0 7	Αμ Αμ mA

3621fa

(Updated Table for Page 1, RED are NEW)

LTC3621 Options

PART NAME	FREQUENCY	VOUT
LTC3621	1.00MHz	Adjustable
LTC3621-3.3	1.00MHz	3.3V
LTC3621-5	1.00MHz	5V
LTC3621-2	2.25MHz	Adjustable
LTC3621-23.3	2.25MHz	3.3V
LTC3621-25	2.25MHz	5V

(Updated Table for Page 2, RED are NEW) ORDER INFORMATION

ONDER HIT ON	*********			
LEAD FREE FINISH	TAPE AND REEL	MARKING*	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LTC3621EDCB#PBF	LTC3621EDCB#TRPBF	LGDG	6-Lead (2mm × 3mm) Plastic DFN	-40°C to 125°C
LTC3621IDCB#PBF	LTC3621IDCB#TRPBF	LGDG	6-Lead (2mm × 3mm) Plastic DFN	-40°C to 125°C
LTC3621EDCB-3.3#PBF	LTC3621EDCB-3.3#TRPBF	LGQF	6-Lead (2mm × 3mm) Plastic DFN	-40°C to 125°C
LTC3621IDCB-3.3#PBF	LTC3621IDCB-3.3#TRPBF	LGQF	6-Lead (2mm × 3mm) Plastic DFN	-40°C to 125°C
LTC3621EDCB-5#PBF	LTC3621EDCB-5#TRPBF	LGQC	6-Lead (2mm × 3mm) Plastic DFN	-40°C to 125°C
LTC3621IDCB-5#PBF	LTC3621IDCB-5#TRPBF	LGQC	6-Lead (2mm × 3mm) Plastic DFN	-40°C to 125°C
LTC3621EMS8E#PBF	LTC3621EMS8E#TRPBF	LTGDH	8-Lead Plastic MSOP	-40°C to 125°C
LTC3621IMS8E#PBF	LTC3621IMS8E#TRPBF	LTGDH	8-Lead Plastic MSOP	-40°C to 125°C
LTC3621EMS8E-3.3#PBF	LTC3621EMS8E-3.3#TRPBF	LTGNY	8-Lead Plastic MSOP	-40°C to 125°C
LTC3621IMS8E-3.3#PBF	LTC3621IMS8E-3.3#TRPBF	LTGNY	8-Lead Plastic MSOP	-40°C to 125°C
LTC3621EMS8E-5#PBF	LTC3621EMS8E-5#TRPBF	LTGNX	8-Lead Plastic MSOP	-40°C to 125°C
LTC3621IMS8E-5#PBF	LTC3621IMS8E-5#TRPBF	LTGNX	8-Lead Plastic MSOP	-40°C to 125°C
LTC3621EDCB-2#PBF	LTC3621EDCB-2#TRPBF	LGHY	6-Lead (2mm × 3mm) Plastic DFN	-40°C to 125°C
LTC3621IDCB-2#PBF	LTC3621IDCB-2#TRPBF	LGHY	6-Lead (2mm × 3mm) Plastic DFN	-40°C to 125°C
LTC3621EDCB-23.3#PBF	LTC3621EDCB-23.3#TRPBF	LGQG	6-Lead (2mm × 3mm) Plastic DFN	-40°C to 125°C
LTC3621IDCB-23.3#PBF	LTC3621IDCB-23.3#TRPBF	LGQG	6-Lead (2mm × 3mm) Plastic DFN	-40°C to 125°C
LTC3621EDCB-25#PBF	LTC3621EDCB-25#TRPBF	LGQD	6-Lead (2mm × 3mm) Plastic DFN	-40°C to 125°C
LTC3621IDCB-25#PBF	LTC3621IDCB-25#TRPBF	LGQD	6-Lead (2mm × 3mm) Plastic DFN	-40°C to 125°C
LTC3621EMS8E-2#PBF	LTC3621EMS8E-2#TRPBF	LTGHZ	8-Lead Plastic MSOP	-40°C to 125°C
LTC3621IMS8E-2#PBF	LTC3621IMS8E-2#TRPBF	LTGHZ	8-Lead Plastic MSOP	-40°C to 125°C
LTC3621EMS8E-23.3#PBF	LTC3621EMS8E-23.3#TRPBF	LTGNZ	8-Lead Plastic MSOP	-40°C to 125°C
LTC3621IMS8E-23.3#PBF	LTC3621IMS8E-23.3#TRPBF	LTGNZ	8-Lead Plastic MSOP	-40°C to 125°C
LTC3621EMS8E-25#PBF	LTC3621EMS8E-25#TRPBF	LTGQB	8-Lead Plastic MSOP	-40°C to 125°C
LTC3621IMS8E-25#PBF	LTC3621IMS8E-25#TRPBF	LTGQB	8-Lead Plastic MSOP	-40°C to 125°C
	•	•		_

VOUT	Regulated Fixed Output Voltage	LTC3621-3.3/LTC3621-23.3		3.267	3.3	3.333	٧
1			0	3.250	3.3	3.350	V
-		LTC3621-5/LTC3621-25		4.950	5.0	5.050	V
			0	4.925	5.0	5.075	V
IFB(VOUT)	Feedback Input Leakage Current	Fixed Output Versions			2	10	uA

LTC3621/LTC3621-2

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the specified operating junction temperature range, otherwise specifications are at $T_J = 25^{\circ}C$. (Note 3) $V_{IN} = 12V$, unless otherwise noted.

		u \ / II		*			
SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V _{FB}	Regulated Feedback Voltage	LTC3621/LTC3621-2	•	0.594 0.591	0.6 0.6	0.606 0.609	V
V _{FB}	FB Input Current	LTC3621/LTC3621-2				10	nA
ΔV _{LINE(REG}	Reference Voltage Line Regulation	V _{IN} = 2.7V to 17V (Note 5)			0.01	0.015	%/V
ΔV _{LOAD(REG}	G) Output Voltage Load Regulation	(Note 5)			0.1		%
I _{LSW}	NMOS Switch Leakage PMOS Switch Leakage				0.1 0.1	1	µА µА
R _{DS(ON)}	NMOS On-Resistance (Bottom FET) PMOS On-Resistance (Top FET)	V _{IN} = 5V			0.15 0.37		$\frac{\Omega}{\Omega}$
D _{MAX}	Maximum Duty Cycle	V _{FB} = 0.5V, V _{MODE} = 1.5V	•		100		%
t _{ON(MIN)}	Minimum On-Time	V _{FB} = 0.7V, V _{MODE} = 1.5V			60		ns
V _{RUN}	RUN Input High Threshold RUN Input Low Threshold			0.3		1.0	V
I _{RUN}	RUN Input Current	V _{RUN} = 12V			0	20	nA
V _{MODE}				V _{INTVCC} - 0.4		0.3	V
	Forced Continuous Mode			1.0		V _{INTVCC} - 1.0	1.2 V
MODE/SYN	MODE Input Current	V _{MODE} = 3.6V			0	10 20	nA
t _{SS}	Internal Soft-Start Time				_{0.5} 0.8		ms
LIM	Peak Current Limit		•	1.44 1.30	1.60	1.76 1.80	A A
V_{UVLO}	V _{INTVCC} Undervoltage Lockout	V _{IN} Ramping Up		2.4	2.6	2.7	V
V _{UVLO(HYS)}	V _{INTVCC} Undervoltage Lockout Hysteresis				250		mV
V _{OVLO}	V _{IN} Overvoltage Lockout Rising		•	18	19	20	V
V _{OVLO(HYS)}	V _{IN} Overvoltage Lockout Hysteresis				300		mV _
f _{OSC}	Oscillator Frequency	LTC3621/LTC3621-3.3/LTC3621-5 LTC3621	•	0.92 0.82	1.00	1.08 1.16	MHz 8
		LTC3621-2/LTC3621-23.3/LTC3621-25 LTC3621	•	2.05 1.8	2.25	2.45 2.6	MHz &
NINTVCC .	V _{INTVCC} LDO Output Voltage	V _{IN} > 4V		3.3	3.6	3.9	V
ΔV _{PGOOD}	Power Good Range				±7.5	±11 12.	5 %
R _{PGOOD}	Power Good Resistance	PGOOD R _{DS(ON)} at 500µA			275	350	Ω
t _{PGOOD}	PGOOD Delay	PGOOD Low to High PGOOD High to Low			0 32		Cycles Cycles
I _{PGOOD}	PGOOD Leakage Current					100	nA
TSYNC	SYNC Capture Range			60		140	%
-							

may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Note 2: Transient absolute maximum voltages should not be applied for more than 4% of the switching duty cycle.

Note 3: The LTC3621 is tested under pulsed load conditions such that $T_J \approx T_A$. The LTC3621E is guaranteed to meet specifications from 0°C to 85°C junction temperature. Specifications over the -40°C to 125°C operating junction temperature range are assured by design, characterization and correlation with statistical process controls. The LTC3621I is guaranteed over the -40°C to 125°C operating junction

consistent with these specifications is determined by specific operating conditions in conjunction with board layout, the rated package thermal impedance and other environmental factors.

Note 4: The quiescent current in forced continuous mode does not include switching loss of the power FETs.

Note 5: The LTC3621 is tested in a proprietary test mode that connects V_{FB} to the output of error amplifier.

Note 6: T_J is calculated from the ambient, T_A , and power dissipation, P_D , according to the following formula:

$$T_J = T_A + (P_D \cdot \theta_{JA})$$

36

LTC3621/LTC3621-2

PIN FUNCTIONS (DFN/MSOP)

SW (Pin 1/Pin 1): Switch Node Connection to the Inductor of the Step-Down Regulator.

V_{IN} (Pin 2/Pin 2): Input Voltage of the Step-Down Regulator.

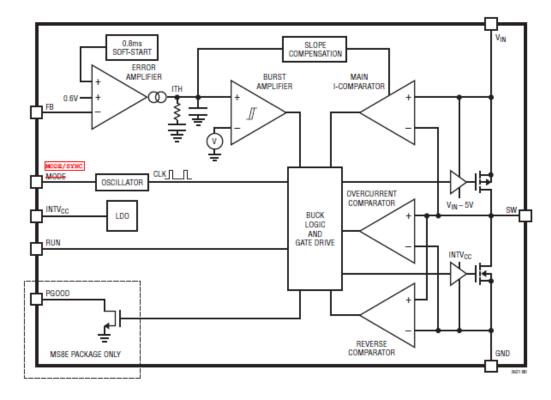
RUN (Pin 3/Pin 3): Logic Controlled RUN Input. Do not leave this pin floating. Logic high activates the step-down regulator.

FB (Pin 4/Pin 5): Feedback Input to the Error Amplifier of the Step-Down Regulator. Connect a resistor divider tap to this pin. The output voltage can be adjusted from 0.6V to V_{IN} by:

 $V_{OUT} = 0.6V \cdot [1 + (R1/R2)]$

MODE/SYNC (Pin 6/Pin 7): Burst Mode Select and External Clock Synchronization of the Step-Down Regulator. Tie MODE/SYNC to INTVCC for Burst Mode operation with a 400mA peak current clamp, tie MODE/SYNC to GND for pulse skipping operation, and tie MODE/SYNC to a voltage between 1V and VINTVCC – 1.2V for forced continuous mode. Furthermore, connecting MODE/SYNC to an external clock will sync the system clock to the external clock and put the part in forced continuous mode.

PGOOD (Pin 4, MSOP Package Only): V_{OUT} within Regulation Indicator.


INTV_{CC} (Pin 5/Pin 6): Low Dropout Regulator. Bypass with at least 1µF to Ground.

MODE (Pin 6/Pin 7): Burst Mode Select of the Step-Down-Regulator. Tie MODE to INTV_{CC} for Burst Mode operation-with a 400mA peak current clamp, tie MODE to GND for-pulse skipping operation, and tie MODE to a voltage between 1V and V_{INTVCC} – 1V for forced continuous mode.

GND (Exposed Pad Pin 7/Pin 9): Ground Backplane for Power and Signal Ground. Must be soldered to PCB ground.

SGND (Pin 8, MSOP Package Only): Signal Ground.

BLOCK DIAGRAM

3621fa

