

PRODUCT/PROCESS CHANGE NOTIFICATION

PCN IPD-DIS/13/8192 Dated 30 Oct 2013

ACST210-8B upgrade to ECOPACK2 grade with copper wire conversion in Longgang assembly plant

Table 1. Change Implementation Schedule

Forecasted implementation date for change	23-Oct-2013
Forecasted availability date of samples for customer	23-Oct-2013
Forecasted date for STMicroelectronics change Qualification Plan results availability	23-Oct-2013
Estimated date of changed product first shipment	29-Jan-2014

Table 2. Change Identification

Product Identification (Product Family/Commercial Product)	ACST210-8B(TR)
Type of change	Package assembly material change
Reason for change	to upgrade the quality of the product
Description of the change	ST is converting its AC Switches in DPAK package from the standard molding compound to ECOPACK2 grade "Halogen free" compound. Package assembly will be done using copper wires instead of gold wires in ST LongGang factory instead of ST Shenzhen factory. Looking for the continuous improvement approach in terms of quality, will be implemented on DPAK a frame with new version so called "STANDARD BRIDGE FRAME". STANDARD BRIDGE FRAME has no impact in Data-sheel of the package.
Change Product Identification	internal codification and QA number and marking
Manufacturing Location(s)	

47/.

Table 3. List of Attachments	Tal	ble	3. L	ist	of	Attac	chm	ents
------------------------------	-----	-----	------	-----	----	-------	-----	------

Customer Part numbers list	
Qualification Plan results	

Customer Acknowledgement of Receipt	PCN IPD-DIS/13/8192
Please sign and return to STMicroelectronics Sales Office	Dated 30 Oct 2013
□ Qualification Plan Denied	Name:
□ Qualification Plan Approved	Title:
	Company:
□ Change Denied	Date:
□ Change Approved	Signature:
Remark	
1	

47/.

DOCUMENT APPROVAL

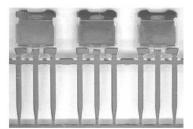
Name	Function
Paris, Eric	Marketing Manager
Duclos, Franck	Product Manager
Cazaubon, Guy	Q.A. Manager

A7/.

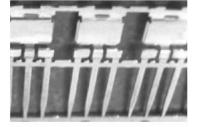
(1) IPG: Industrial & Power Group - ASD: Application Specific Device - IPAD™: Integrated Passive and Active Devices

PCN Product/Process Change Notification

ACST210-8B upgrade to ECOPACK®2 grade with copper wire conversion in Longgang assembly plant


Notification number: IPG-DIS/13/8192		Issue Date	23/10/2013
Issued by	Aline AUGIS		
Product series affected by	the change	ACST210-8B and ACST210)-8BTR
Type of change		Assembly package material	change

Description of the change


ST is converting its **AC Switches in DPAK** package from the standard molding compound to **ECOPACK®2** grade "Halogen free" compound. Package assembly will be done using copper wires instead of gold wires in ST LongGang factory instead of ST Shenzhen factory.

Looking for the continuous improvement approach in terms of quality, a new frame version called "STANDARD BRIDGE FRAME" will be implemented.

The STANDARD BRIDGE FRAME has no impact, neither on the datasheet nor on the package outline.

Picture 1: Actual Frame

Picture 2: New "Standard Bridge Frame"

Reason for change

To meet the so called "Halogen-Free" requirements of the market, ST is converting its AC Switches housed in DPAK package to the ECOPACK®2 grade.

Former versus changed product:	The changed products do not present modified electrical,
	dimensional or thermal parameters, leaving unchanged the
	current information published in the product datasheet
	The Moisture Sensitivity Level of the part (according to the
	IPC/JEDEC JSTD-020D standard) remains unchanged.
	The footprint recommended by ST remains the same.
	There is no change in the packing modes and the standard

Issue date 23-10-2013 1/2

delivery quantities either.

STMicroelectronics IPD - ASD & IPAD™ Division¹ BU Thyristors and Triacs

 $\textit{(1) IPG: Industrial \& Power Group - ASD: Application Specific Device-IPADTM: Integrated Passive and Active Devices }$

Disposit	tion of former products						
Deliveries of former product version will continue while the conversion is brought to completion and as long as former product stocks last.							
/larking	and traceability						
				itional letter "G" that will as shown below.			
printed to the right of the "e3" symbol of the IPC-JEDEC J-STD 609 standard, as shown below. The traceability for the modified products will be ensured by an internal codification called finish good and by the Q.A. number.							
he Q.A.	namber.	Outsification complete data October 2012					
Qualifica	ation complete date		October 2013				
Qualifica		Package	Commercial part	Availability date			
Qualifica	ation complete date	Package DPAK		Availability date			
Qualifica	ation complete date sted sample availability	DPAK	Commercial part Number				
Qualifica	ation complete date ted sample availability Product family ACSwitches	DPAK	Commercial part Number ACST210-8B				
Qualifica	ation complete date sted sample availability Product family ACSwitches implementation schedu	DPAK ule Estimated	Commercial part Number ACST210-8B	now			
Qualifica	ation complete date ted sample availability Product family ACSwitches implementation schedu Sales types ACST210-8B(-TR)	DPAK ule Estimated	Commercial part Number ACST210-8B	now Estimated first shipments			

Absence of acknowledgement of this PCN within 30 days of receipt will constitute acceptance of the change Absence of additional response within 90 days of receipt of this PCN will constitute acceptance of the change

Qualification program and results	QRP12281 Attached
-----------------------------------	-------------------

Issue date 23-10-2013 2/2

External Reliability Report

New ECOPACK®2 molding compound for selected products housed in IPAK DPAK package

Genera	al Information	Lo	ocations
Product Lines AC Switches		Wafer fab	ST Tours (FRANCE)
Products Description	ACS / TRIAC / SCR	Assembly plant	ST Longgang (CHINA)
Product Group	IPD	Reliability Lab	ST Tours (FRANCE)
Product division	ASD&IPAD		
Packages	DPAK/IPAK		

DOCUMENT INFORMATION

Version	Date	Pages	Prepared by	Approved by	Comment
Rev. 1	November 21th, 2012	16	Gilles DUTRANNOY	Jean-Paul Rebrasse	First issue
Rev. 2	June 19th, 2013	14	Gilles DUTRANNOY	Jean-Paul Rebrasse	Add 800V series

Note: This report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the potential reliability risks during the product life using a set of defined test methods.

This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics general terms and conditions of Sale. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics.

IPD (Integrated Passive Device) Group ASD & IPAD division Quality and Reliability

June 19th, 2013 Report ID: 12281QRP

TABLE OF CONTENTS

1	APPL	LICABLE AND REFERENCE DOCUMENTS	3
2	GLO	SSARY	3
		ABILITY EVALUATION OVERVIEW	
	3.1	Objectives	4
	3.2	CONCLUSION	
4	DEVI	ICE CHARACTERISTICS	5
	4.1	DEVICE DESCRIPTIONS	5
5		T RESULTS SUMMARY	
		Test vehicles	
		TEST PLAN AND RESULT SUMMARY	
6	APPE	ENDIX	12
	6.1	DEVICE DETAILS	
	6.2	Test Descriptions	13
	6.3	INVOLVED PRODUCT SERIES:	14

1 APPLICABLE AND REFERENCE DOCUMENTS

Document reference	Short description
JESD 47	Stress-Test-Driven Qualification of Integrated Circuits
MIL-STD-750C	Test method for semiconductor devices
SOP 2614	Reliability requirements for product qualification (ST internal document)
SOP 267	Product maturity levels (ST internal document)
0061692	Reliability tests and criteria for qualifications (ST internal document)
PCN reference	IPD-DIF/12/xxxx

2 GLOSSARY

BOM	Bill Of Materials
DUT	Device Under Test
F/G	Finished Good
HTRB	High Temperature Reverse Bias
PCT	Pressure Cooker Test
P/N	Part Number
RH	Relative Humidity
SS Sample Size	
TCT	Temperature Cycling Test
ТНВ	Temperature Humidity Bias

IPD (Integrated Passive Device) Group ASD & IPAD division Quality and Reliability

June 19th, 2013 Report ID: 12281QRP

3 RELIABILITY EVALUATION OVERVIEW

3.1 Objectives

ST products housed in **IPAK DPAK package** are upgraded to ECOPACK[®]2 level by changing its current compound to halogen free.

3.2 Conclusion

Qualification Plan requirements have been fulfilled without exception. Reliability tests have shown that the devices behave correctly against environmental tests (no failure). Moreover, the stability of electrical parameters during the accelerated tests demonstrates the robustness of the product which is consequently expected during their lifetime.

4 DEVICE CHARACTERISTICS

4.1 **Device descriptions**

TN805, TN815 TS820, TYN608

Sensitive and standard 8 A SCRs

Features

- On-state rms current, I_{T(RMS)} 8 A
- Repetitive peak off-state voltage, V_{DRM}/V_{RRM} 600 and 800 V
- Triggering gate current, I_{GT} 0.2 to 15 mA

Description

Available either in sensitive (TS8) or standard (TN8 / TYN) gate triggering levels, the 8 A SCR series is suitable to fit all modes of control found in applications such as overvoltage crowbar protection, motor control circuits in power tools and kitchen aids, inrush current limiting circuits, capacitive discharge ignition and voltage regulation circuits.

Available in through-hole or surface-mount packages, they provide an optimized performance in a limited space.

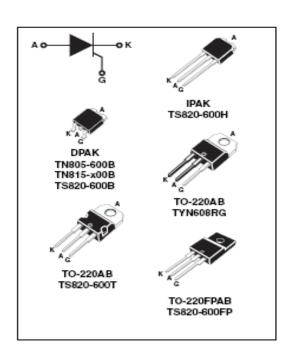


Table 1. Device summary

Order code	Voltage (x00))V _{DRM} /V _{RRM}	Sensitivity	Dookson	
Order code	600 V	800 V	lgт	Package	
TS820-600B	x		0.2 mA	DPAK	
TS820-600H	х		0.2 mA	IPAK	
TS820-600T	х		0.2 mA	TO-220AB	
TS820-600FP	х		0.2 mA	TO-220FPAB	
TN805-600B	х		5 mA	DPAK	
TN815-x00B	х	x	15 mA	DPAK	
TYN608RG	х		15 mA	TO-220AB	

October 2011 Doc ID 7476 Rev 7 1/13

ини.st.com

TN1515-600B

15 A standard SCR

Table 1. Main features

Symbol	Value	Unit
I _{T(RMS)}	15	Α
V _{DRM} /V _{RRM}	600	٧
I _{GT (Q1)}	15	mA

Description

Specifically designed to control motor in hand tools application, the TN15 SCR is available in DPAK package, providing a high robustness against stalled rotor operating conditions in a small SMD package

Table 2. Order code

Part number	Marking
TN1515-600B-TR	TN15 15600
TN1515-600B	TN15 15600

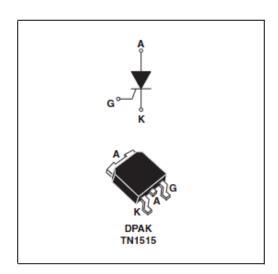


Table 3. Absolute maximum ratings

Symbol	Parameter	Value	Unit		
I _{T(RMS)}	RMS on-state current (180° conduction angle) T _c = 109° C		15	Α	
I _{T(AV)}	Average on-state current (180° conduction	angle)	T _c = 109° C	9.5	Α
I _{TSM}	Non repetitive surge peak on-state current	$t_p = 8.3 \text{ ms}$	T _i = 25° C	165	Α
TSM		t _p = 10 ms	- 1j=25 C	150	
l ² t	I ² t Value for fusing t _p = 10 ms		T _j = 25° C	113	A ² s
dl/dt	dl/dt Critical rate of rise of on-state current $I_G = 2 \times I_{GT}$, $t_r \le 100 \text{ ns}$ $F = 120 \text{ Hz}$		T _j = 125° C	50	A/µs
I _{GM}	Peak gate current	t _p = 20 μs	T _j = 125° C	4	Α
P _{G(AV)}	Average gate power dissipation T _j = 125° C		1	W	
T _{stg} T _j	Storage junction temperature range Operating junction temperature range		- 40 to + 150 - 40 to + 125	°C	
V _{RGM}	Maximum peak reverse gate voltage			5	٧

July 2007 Rev 2 1/7

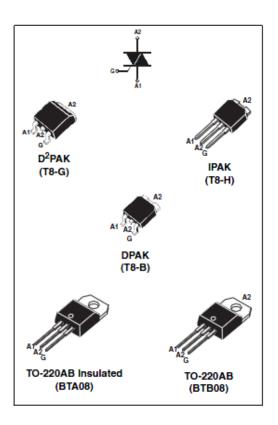
www.st.com

BTA08, BTB08 T810, T835

Snubberless™, logic level and standard 8 A Triacs

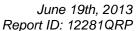
Features

- On-state rms current, I_{T(RMS)} 8 A
- Repetitive peak off-state voltage, V_{DRM}/V_{RRM} 600 to 800 V
- Triggering gate current, I_{GT (Q1)} 5 to 50 mA


Description

Available either in through-hole or surface-mount packages, the **BTA08**, **BTB08** and **T8** triac series is suitable for general purpose AC switching. They can be used as an ON/OFF function in applications such as static relays, heating regulation, induction motor starting circuits... or for phase control operation in light dimmers, motor speed controllers,...

The snubberless versions (BTA/BTB...W and T8 series) are specially recommended for use on inductive loads, thanks to their high commutation performances.


Logic level versions are designed to interface directly with low power drivers such as microcontrollers.

By using an internal ceramic pad, the BTA series provides voltage insulated tab (rated at 2500 V_{RMS}) complying with UL standards (file ref.: E81734).

March 2010 Doc ID 7472 Rev 7 1/12

www.st.com

ACS120-7SB/SFP/ST

ASD™ AC Switch Family

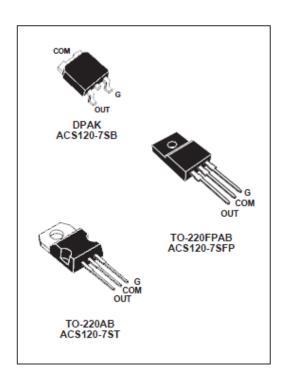
AC LINE SWITCH

MAIN APPLICATIONS

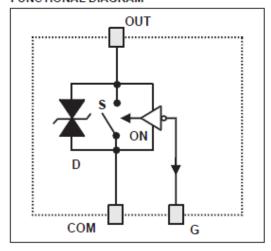
- AC static switching in appliance control systems
- Drive of low power high inductive or resistive loads like
 - relay, valve, solenoid, dispenser
 - pump, fan, micro-motor
 - defrost heater

FEATURES

- Blocking voltage : V_{DRM} / V_{RRM} = +/-700V
- Avalanche controlled : V_{CL} typ = 1100 V
- Nominal conducting current: I_{T(RMS)} = 2A
- Gate triggering current: IgT < 10 mA
- Switch integrated driver
- High noise immunity: static dV/dt >500V/µs


BENEFITS

- Needs no more external protection snubber or varistor
- . Enables equipment to meet IEC 61000-4-5
- Reduces component count up to 80 %
- . Interfaces directly with the microcontroller
- Eliminates any gate kick back on the microcontroller
- Allows straightforward connection of several ACS™ on same cooling pad.


DESCRIPTION

The ACS120 belongs to the AC line switch family built around the ASD™ concept. This high performance switch circuit is able to control a load up to 2 A.

The ACS™ switch embeds a high voltage clamping structure to absorb the inductive turn off energy and a gate level shifter driver to separate the digital controller from the main switch. It is triggered with a negative gate current flowing out of the gate pin.

FUNCTIONAL DIAGRAM

April 2003 - Ed: 2A 1/11

ACST2

Overvoltage protected AC switch

Features

- Triac with overvoltage crowbar technology
- High noise immunity: static dV/dt > 500 V/µs
- ACST210-8FP, in the TO-220FPAB package, provides insulation voltage rated at 1500 V rms

Benefits

- Enables equipment to meet IEC 61000-4-5
- High off-state reliability with planar technology
- Needs no external overvoltage protection
- Reduces component count
- Interfaces directly with the micro-controller
- High immunity against fast transients described in IEC 61000-4-4 standards

Applications

- AC on/off static switching in appliances and industrial control systems
- Driving low power highly inductive loads like solenoid, pump, fan, and micro-motor

Description

The ACST2 series belongs to the ACS™/ACST power switch family built with A.S.D.® (application specific discrete) technology. This high performance device is suited to home appliances or industrial systems and drives loads up to 2 A.

This ACST2 switch embeds a Triac structure with a high voltage clamping device to absorb the inductive turn-off energy and withstand line transients such as those described in the IEC 61000-4-5 standards. The component needs a low gate current to be activated ($I_{\rm GT} < 10$ mA) and still shows a high electrical noise immunity complying with IEC standards such as IEC 61000-4-4 (fast transient burst test).

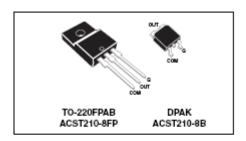


Figure 1. Functional diagram

OUT

G

COM

Table 1. Device summary

Symbol	Value	Unit
IT(RMS)	2	A
V _{DRM} /V _{RRM}	800	v
lgт	10	mA

TM: ACS is a trademark of STMicroelectronics ©: A.S.D. is a registered trademark of STMicroelectronics

5 TEST RESULTS SUMMARY

5.1 <u>Test vehicles</u>

8 test vehicles were chosen:

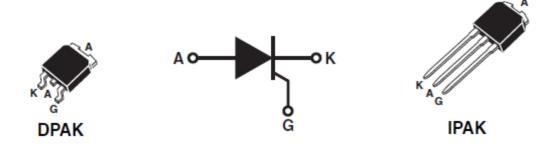
- TS820-600H
- TN1515-600B
- T835-600B
- ACS120-7SB
- T835-800B/8
- TN22-500H\$
- ACST210-8B
- ACST410-8BTR

Lot #	Part Number	art Number Process/ Package		Part Number Process/ Package Cor	
LOT 1	TS820-600H/8	IPAK	Qualification lot		
LOT 2	TN1515-600B/8	DPAK	Qualification lot		
LOT 3	ACS120-7SB/8	DPAK	Qualification lot		
LOT 4	PT 4 T835-600B/8 DPA		Qualification lot		
LOT 5	T835-800B/8	DPAK	Qualification lot		
LOT 6	TN22-500H\$/8	IPAK	Qualification lot		
LOT 7	ACST210-8B/8	DPAK	Qualification lot		
LOT 8	ACST410-8BTR/8	DPAK	Qualification lot		

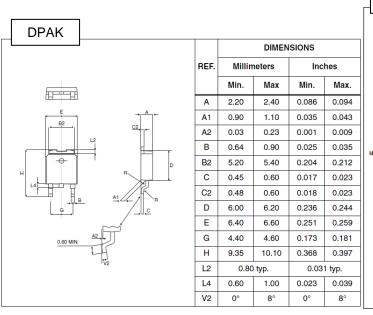
5.2 Test plan and result summary

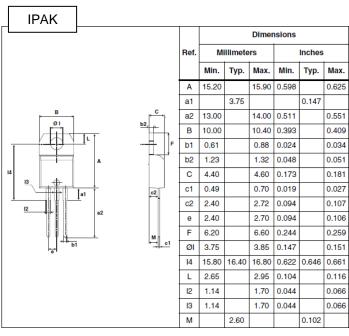
Test	Std ref.	Conditions	SS	Step	LOT 1
	JESD22 A-108	T _i = 125 °C		168 h	0/77
HTRB	MIL-STD-750C	V = VDRM rated (AC peak)	77	500 h	0/77
	method 1040			1000 h	0/77
тс	JESD22 A-104	-65 °C/+150 °C 2 cycles/h 500 cycles	25	100 cycles	0/25
10	JESD22 A-104		25	500 cycles	0/25
		85 °C 85% RH Bias = 100 V		168 h	0/25
ТНВ	JESD22 A-101		25	500 h	0/25
		1000 h		1000 h	0/25
AC	JESD22 A-101	121 °C 2 bars 96 h	25	96 h	0/25

Test	Std ref.	Conditions	ss	Step	LOT 2	LOT3	LOT4
	JESD22 A-108	T _i = 125 °C		168 h	0/68	0/66	0/69
HTRB	MIL-STD-750C	V = VDRM rated	203	500 h	0/68	0/66	0/69
	method 1040	(AC peak)		1000 h	0/68	0/66	0/69
PC	JESD22 A-113	85 °C 85% RH 168 h	75	168 h	0/25	0/25	0/25
TC	JESD22 A-104	-65 °C/+150 °C cycle/h 1000 cycles	75	500 cycles	0/25	0/25	0/25
10				1000 cycles	0/25	0/25	0/25
PC	JESD22 A-113	85 °C 85% RH 168 h	75	168 h	0/25	0/25	0/25
	35 °C 85 °C 85% RH Bias = 100			168 h	0/25	0/25	0/24
ТНВ		85% RH Bias = 100 V		500 h	0/25	0/25	0/24
		1000 h		1000 h	0/25	0/25	0/24
PC	JESD22 A-113	85 °C 85% RH 168 h	75	168 h	0/25	0/25	0/25
AC	JESD22 A-101	121 °C 2 bars 96 h		96 h	0/25	0/25	0/25


June 19th, 2013
Report ID: 12281QRP

Test	Std ref.	Conditions	SS	Step	LOT5	LOT6	LOT7	LOT8
HTRB	JESD22 A-108	T _j = 125 °C V = VDRM rated (AC peak)	77	168 h	0/77	0/77	0/77	0/77
	MIL-STD-750C method 1040			500 h	0/77	0/77	0/77	0/77
				1000 h	0/77	0/77	0/77	0/77


6 APPENDIX


6.1 **Device details**

6.1.1 Pin connection

6.1.2 Package outline/Mechanical data

IPD (Integrated Passive Device) Group ASD & IPAD division Quality and Reliability

June 19th, 2013 Report ID: 12281QRP

6.2 <u>Test Descriptions</u>

Test name	Description	Purpose							
Die-oriented test									
HTRB (AC mode) High Temperature Reverse Bias	The device is stressed here in AC mode, trying to satisfy as much as possible the following conditions: - Low power dissipation. - Peak supply voltage compatible with diffusion process and internal circuitry limitations.	To determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices operating condition in an accelerated way. To maximize the electrical field across either reverse-biased junctions or dielectric layers, in order to investigate the failure modes linked to mobile contamination, oxide aging, layout sensitivity to surface effects.							
Die and Package-oriented test									
THB Temperature Humidity Bias	The device is biased in static configuration minimizing its internal power dissipation, and stored at controlled conditions of ambient temperature, and relative humidity.	To evaluate the package moisture resistance with electrical field applied, both electrolytic and galvanic corrosion are put in evidence.							
TC Temperature Cycling	The device is submitted to cycled temperature excursions, between a hot and a cold chamber in air atmosphere.	To investigate failure modes related to the thermomechanical stress induced by the different thermal expansion of the materials interacting in the diepackage system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire-bonds failure, dieattach layer degradation.							
PC Preconditioning The device is submitted to a typical temperature profile used for surface mounting devices, after a controlled moisture absorption.		As stand-alone test: to investigate the moisture sensitivity level. As preconditioning before other reliability tests: to verify that the surface mounting stress does not impact on the subsequent reliability performance. The typical failure modes are "pop corn" effect and delamination.							
Autoclave and controlled conditions of pressure and		To investigate corrosion phenomena affecting die or package materials, related to chemical contamination and package hermeticity.							

6.3 <u>Involved product series:</u>

Package	ECOPACK®2 conversion	Involved Product Series			
		ACS120-7SB(-TR)			
		ACSTxxx-8B(-TR)			
		FLC01-200B-TR			
		FLC10-200B			
		LIC01-215B-TR			
		T405-xxxB(-TR)			
		T405Q-600B-TR			
		T410-xxxB(-TR)			
DDAK		T435-xxxB(-TR)			
DPAK		T810-xxxB(-TR)			
		T835-xxxB(-TR)			
		TN1205T-600B(-TR)			
		TN1215-x00B(-TR)			
	All	TN1515-600B-TR TN805-600B-TR			
		TN815-x00B-TR			
		TN815-9BAS(-TR)			
		TS1220-600B(-TR)			
		TSx20-x00B(-TR)			
		FLC01-200H			
		LIC01-xxxH			
		T405-600H			
		T405Q-600H			
		T410-x00H			
IPAK		T435-x00H			
li Alt		T835-600H			
		TN1215-x00H			
		TN22-1500H			
		TN815-800H			
		TS1220-600H			
		TSx20-600H			

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

RESTRICTIONS OF USE AND CONFIDENTIALITY OBLIGATIONS:

THIS DOCUMENT AND ITS ANNEXES CONTAIN ST PROPRIETARY AND CONFIDENTIAL INFORMATION. THE DISCLOSURE, DISTRIBUTION, PUBLICATION OF WHATSOEVER NATURE OR USE FOR ANY OTHER PURPOSE THAN PROVIDED IN THIS DOCUMENT OF ANY INFORMATION CONTAINED IN THIS DOCUMENT AND ITS ANNEXES IS SUBMITTED TO ST PRIOR EXPRESS AUTHORIZATION. ANY UNAUTHORIZED REVIEW, USE, DISCLOSURE OR DISTRIBUTION OF SUCH INFORMATION IS EXPRESSLY PROHIBITED.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2013 STMicroelectronics - All rights reserved.

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

