Errata Sheet and Guidelines for MAX 10 ES Devices

Contents

Device Errata for MAX 10 ES Devices	1-1
ADC Prescalar	1-1
ESD Performance	1-2
Timing Model Adjustment	1-2
Device Guidelines for MAX 10 ES Devices	2-1
Recommended Power-up Sequencing for MAX 10 ES Devices	2-1
Full Chip Erase Prior to Initial Device Programming	
Migration Guidelines	2-2
Document Revision History	

Device Errata for MAX 10 ES Devices

1

2015.06.12

ES-1040

This errata sheet provides information about known device issues affecting MAX[®] 10 engineering sample (ES) devices.

Note: • ES devices are not intended to be used for volume production or device qualification testing.

• ES devices are intended to be used at nominal voltage and nominal temperature only for DDR3 external memory interface (EMIF) support.

Table 1-1: Device Errata for MAX 10 ES Devices

This table lists the specific device issues and the affected MAX 10 ES devices.

Issue	Affected Devices	Planned Fix
ADC Prescalar on page 1-1	10M08 ES	Production Devices
ADC prescalar gain errorADC prescalar THD performance		
ESD Performance on page 1-2 HBM ESD performance for MAX 10 ES devices is below target level	10M08 ES	Production Devices
Timing Model Adjustment on page 1-2 Timing model adjustment on I/O-to-Core and Core-to-I/O for MAX 10 ES devices	10M08 ES	Updated Timing Model in the Quartus II software version 15.0

ADC Prescalar

The ADC prescalar in the 10M08 ES devices does not meet datasheet specifications, affecting gain error and total harmonic distortion (THD) specifications. Other specifications related to prescalar are not affected. This issue will be fixed in production devices.

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2015 Registered

*Other names and brands may be claimed as the property of others.

Table 1-2: Gain Error and Drift Specifications for 10M08 ES Devices

Parameter	Symbol	Condition	Channel	Min	Тур	Max	Unit
Gain error and drift	Egain	With prescalar on	8	2	_	5	%FS
	Egam	With prescalar on	16	-1	_	1	%FS

Table 1-3: Total Harmonic Distortion Specifications for 10M08 ES Devices

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Total Harmonic Distortion	THD	F _{IN} = 50 kHz, F _S = 1 MHz, PLL, Prescalar enabled	61	_	_	dB

ESD Performance

HBM ESD performance for 10M08 ES devices is below target levels (CDM meets targets). Altera will improve ESD performance in production devices.

As per JEDEC document JESD625b, follow the standard ESD handling guidelines, particularly for human handling, (i.e. wear proper ground strap) when handling 10M08 ES devices.

Timing Model Adjustment

To better align the Quartus[®] II timing models with silicon characterization, Altera recommends adjusting the timing for I/O-to-Core and Core-to-I/O data transfer in MAX 10 ES devices. For temporary solution, add 300 ps (0.3 ns) clock uncertainty in TimeQuest Timing Analyzer.

To add 300 ps (0.3 ns) clock uncertainty in TimeQuest Timing Analyzer, add the following constraints in the Synopsys Design Constraints File (.sdc):

- set_clock_uncertainty -setup -to <clock name> -setup -add 0.3
- set_clock_uncertainty -hold -enable_same_physical_edge -to <clock name> -add 0.3

For example:

set_clock_uncertainty -to { inst|altpll_component|auto_generated|pll1|
clk[1] } -setup 0.3

After adding the .sdc file constraint, a clock uncertainty row is added in **Data Required Path** in the timing report.

Device Errata for MAX 10 ES Devices

Figure 1-1: Timing Report Before 300 ps Clock Uncertainty is Added

	Slack	Fron	n Node	To Node Launch Clock		Launch Cl	C Latch Clock		Relationship	Clock Skew	Data Delay
1	0.486	486 datain_deg90 deg90_reg virclk		inst altpll_component auto_generated	pll1 clk[1]	2.500	-0.021	1.369			
	Tota	ı	Incr	RF	Type	Fanout	Location			Element	
15	- 1.2	17	0.000	RR	IC	1	CLKCTRL_G4	inst altpll_	component auto_	generated wire_p	ll1_clk[1]~clkctrl inclk[0]
16	-1.2	17	0.000	RR	CELL	1	CLKCTRL_G4	inst altpll_	component auto_	generated wire_p	ll1_clk[1]~clkctrl outclk
17	- 1.2	17	0.000		RE	1	CLKCTRL_G4	CUDA_CL	KBUF		
18	-1.2	27	0.010		RE	1	CLKBUF_OUT_X0_Y9_N32_I0	CLKBUF_C	DUT		
19	1.3	81	0.154		RE	1	GLOBAL_CLK_H_X0_Y9_N0_I4	GLOBAL_0	CLK_H		
20	1.4	94	0.113		RE	1	GLOBAL_CLK_V_X10_Y10_N0_I4	GLOBAL_0	CLK_V		
21	1.6	45	0.151		RE	1	SCLK_TO_ROWCLK_BUF_X10_Y20_N0_I14	SCLK_TO	ROWCLK_BUF		
22	2.0	56	0.411		RE	1	LAB_CLK_X11_Y20_N0_I5	LAB_CLK			
23	- 2.1	20	0.064		RE	1	BLK_CLK_BUF_X31_Y20_N0_I5	BLK_CLK_	BUF		
24	- 2.1	18	-0.002	RR	IC	1	FF_X31_Y20_N17	deg90_re	g clk		
25	2.4	79	0.361	RR	CELL	1	FF_X31_Y20_N17	deg90_re	g		
3	2.355		-0.124		uTsu	1	FF_X31_Y20_N17	deg90_re	g		

Figure 1-2: Timing Report After 300 ps Clock Uncertainty is Added

	Slack	Fron	m Node	То	Node	Launch Cl	ock Latch Clock		Relationship	Clock Skew	Data Delay	[
1	0.186	datain	_deg90	deg90	_reg	virclk	inst altpll_component auto_general	inst altpll_component auto_generated pll1 clk[1]		-0.021	1.369	
Da	Data Required Path											
	Tota	ı	Incr	RF	Туре	Fanout	Location			Element		
16	1.2	17	0.000	RR	CELL	1	CLKCTRL_G4	inst altpll_	component auto_	generated wire_p	ll1_clk[1]~clkctrl	outcle
17	- 1.2	17	0.000		RE	1	CLKCTRL_G4	CUDA_CL	KBUF			
18	1.2	27	0.010		RE	1	CLKBUF_OUT_X0_Y9_N32_I0	CLKBUF_C	UT			
19	1.3	81	0.154		RE	1	GLOBAL_CLK_H_X0_Y9_N0_I4	GLOBAL_0	CLK_H			
20	1.4	94	0.113		RE	1	GLOBAL_CLK_V_X10_Y10_N0_I4	GLOBAL_0	CLK_V			
21	1.6	45	0.151		RE	1	SCLK_TO_ROWCLK_BUF_X10_Y20_N0_I	4 SCLK_TO_	ROWCLK_BUF			
22	2.0	56	0.411		RE	1	LAB_CLK_X11_Y20_N0_I5	LAB_CLK				
23	- 2.1	20	0.064		RE	1	BLK_CLK_BUF_X31_Y20_N0_I5	BLK_CLK_	BUF			
24	- 2.1	18	-0.002	RR	IC	1	FF_X31_Y20_N17	deg90_re	g clk			
25	2.4	79	0.361	RR	CELL	1	FF_X31_Y20_N17	deg90_re	9			
3	2.179		-0.300	2				clock unc	ertainty			
4	2.055		-0.124		uTsu	1	FF_X31_Y20_N17	deg90_red	3			

Device Guidelines for MAX 10 ES Devices

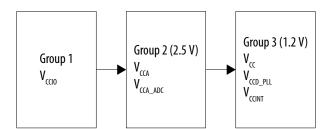
2

2015.06.12

ES-1040

Subscribe

This guidelines sheet provides Altera's recommended guidelines when using MAX 10 ES devices.


- **Note:** ES devices are not intended to be used for volume production or device qualification testing.
 - ES devices are intended to be used at nominal voltage and nominal temperature only for DDR3 EMIF support.

Recommended Power-up Sequencing for MAX 10 ES Devices

To ensure the minimum current draw during power up and configuration for MAX 10 dual supply ES devices, follow the recommended power-up sequence as shown in the figure below.

Figure 2-1: Recommended Power-up Sequence

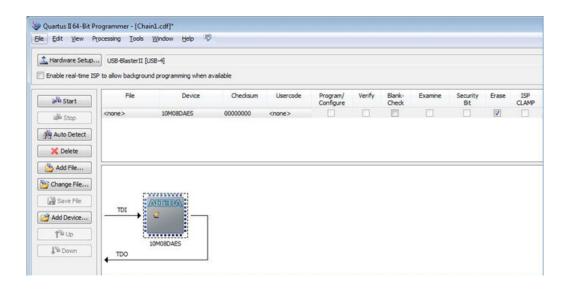
The power rails in each group must be ramped up to a minimum of 90% of their full rail before the next group starts.

Full Chip Erase Prior to Initial Device Programming

You must perform a full chip erase prior to device programming when you use the MAX 10 device for the first time. The full chip erase prevents the reconfiguration watchdog timer from timing out. The full chip erase must be done only prior to initial programming.

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2015 Registered


*Other names and brands may be claimed as the property of others.

For full chip erase, follow these steps:

- 1. Open the Quartus II Programmer.
- 2. In the **Programmer** window, click **Hardware Setup** and select **USB Blaster**.
- 3. Click **Auto Detect** on the left pane.
- **4.** Select the device and set the **Erase** column as shown in the following figure.
- **5.** Click **Start** to start full chip erase.

Figure 2-2: The Quartus II Programmer

Migration Guidelines

This migration guidelines is applicable if you plan to use MAX 10 SC or SF variant (for single supply devices) and DC or DF variant (for dual supply devices) in production devices.

Altera recommends designing your board with MAX 10 ES device SA or DA variant according to the recommendation for SC or SF variant (for single supply devices) and DC or DF variant (for dual supply devices). There are cross variants pin mismatches between MAX 10 ES devices and MAX 10 production devices. You can migrate the pins as recommended in the following tables without impact to your design.

Table 2-1: MAX 10 Devices Migration from ES Device SA Variant to Production Device SC or SF Variant

MAX 10 ES Device SA Variant Pin	MAX 10 Production Device SC or SF Variant Pin
ADC_VREF	VCCA
ANAIN1	GND
REFGND	GND
ADC1IN[18]	I/O

Table 2-2: MAX 10 Devices Migration from ES Device DA Variant to Production Device DC or DF Variant

MAX 10 ES Device DA Variant Pin	MAX 10 Production Device DC or DF Variant Pin
ADC_VREF	VCCA
ANAIN[12]	GND
REFGND	GND
ADC1IN[116] or ADC[12]IN[18]	1/0
VCCA_ADC	VCCA
VCCINT	VCC

Document Revision History

3

2015.06.12

ES-1040

Subscribe 5

Send Feedback

Date	Version	Changes
June 2015	2015.06.12	Updated the note in Device Errata and Device Guidelines chapters: ES devices are not intended to be used for volume production or device qualification testing.
March 2015	2015.03.06	 Added EMIF guideline: ES devices are intended to be used at nominal voltage and nominal temperature only for DDR3 external memory interface (EMIF) support. Removed transient current guidelines. Added Migration Guidelines.
November 2014	2014.11.11	 Added total harmonic distortion specifications for 10M08 ES devices in ADC Prescalar errata. Added errata for timing model adjustment.
September 2014	2014.09.22	Initial release.

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

9001:2015 Registered

*Other names and brands may be claimed as the property of others.

