Operational Amplifier, Low Power, 8 MHz GBW, Rail-to-Rail Input-Output

The NCS2005 provides high performance in a wide range of applications. The NCS2005 offers beyond rail-to-rail input range, full rail-to-rail output swing, large capacitive load driving ability, and low distortion. The inputs can be driven by voltages that exceed both power supply rails, thus eliminating concerns over exceeding the common-mode voltage range. The rail-to-rail output swing capability provides the maximum possible dynamic range at the output. This is particularly important when operating on low supply voltages.

Operating on supplies of 2.2 V to 32 V, the NCS2005 is excellent for a very wide range of applications in low power systems. With a supply current of 1.3 mA, the 8 MHz gain-bandwidth of this device supports applications where faster speeds are required. Placing the amplifier right at the signal source reduces board size and simplifies signal routing. The NCS2005 is available in a space-saving 5-pin SOT-23 package.

Features

- Wide Power Supply Range: 2.2 V to 32 V
- Common Mode Voltage Range Wider than Rail-to-Rail: $V_{CM} = -0.1 \text{ V to } 5.1 \text{ V } @ V_S = 5 \text{ V}$
- Wide Gain-bandwidth: 8 MHz typical
- Low Supply Current: 1.3 mA typical
- • Stable with a 1 nF Capacitor Load with a Phase Margin over 25° @ $V_S = 10~V$
- Available in a Space-saving 5-pin SOT23 Package
- These devices are Pb-free, Halogen free/BFR Free and are RoHS Compliant

Typical Applications

- Active Filters
- Voltage Referenced Buffers
- Sensors and Instrumentation
- Microphone Amplifiers
- ASIC Input Drivers
- Portable Communications
- PCMCIA Cards

ON Semiconductor®

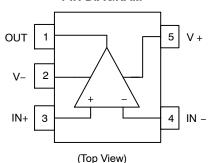
www.onsemi.com

SOT23-5 SN SUFFIX CASE 483

MARKING DIAGRAM

JFK = Specific Device Code

A = Assembly Location


Y = Year

W = Work Week

= Pb-Free Package

(Note: Microdot may be in either location)

PIN DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping [†]
NCS2005SN1T1G	SOT-23 (Pb-Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

Table 1. PIN DESCRIPTION

Pin	Name	Туре	Description
1	OUT	Output	Amplifier output
2	V-	Power	Negative power supply
3	IN+	Input	Non-inverting input of amplifier
4	IN-	Input	Inverting input of amplifier
5	V+	Power	Positive power supply

Table 2. ABSOLUTE MAXIMUM RATINGS (Note 1)

rating	Symbol	Value	Units
Supply Voltage Range (V+ - V-)	V _S	0 to 35	V
Input Voltage Range	V _{CM}	(V-) - 0.3 V to (V+) + 0.3 V	V
Differential Input Voltage Range	V_{diff}	0 to 15	V
Input Pin Current	I _{IN}	±10	mA
Output Pin Current (Note 2)	I _{OUT}	±20	mA
Supply Current	Is	25	mA
Maximum Junction Temperature (Note 3)	T _{J(max)}	+150	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
ESD Capability (Note 4) Human Body Model Charged Device Model	HBM CDM	4000 400	٧
Moisture Sensitivity Level (Note 5)	MSL	Level 1	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Refer to ELECTRICAL CHĂRACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.
- 2. Applies to both single supply and split supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C.
- The maximum power dissipation is a function of T_{J(MAX)}, T_{JA}, and T_A. The maximum allowable dissipation at any ambient temperature is P_d = (T_{J(max)} T_A)/T_{JA}. All numbers apply for packages soldered directly to a PC board.
 This device series incorporates ESD protection and is tested by the following methods:
- - ESD Human Body Model tested per JESD22-A114
 - ESD Charged Device Model tested per ANSI/ESD S5.3.1-2009
- 5. Moisture Sensitivity Level tested per IPC/JEDEC standard: J-STD-020A

Table 3. THERMAL CHARACTERISTICS

Parameter	Symbol	Package	Single Layer Board	Multi Layer Board	Units
Thermal Resistance Junction-to-Ambient (Note 6)	$\theta_{\sf JA}$	SOT-23-5	408 (Note 6)	355 (Note 7)	°C/W

- 6. Values based on a 1S standard PCB according to JEDEC51-3 with 1.0 oz copper and a 300 mm² copper area
- 7. Values based on a 1S2P standard PCB according to JEDEC51-7 with 1.0 oz copper and a 100 mm² copper area

Table 4. OPERATING RANGES

Parameter	Symbol	Min	Max	Units
Power Supply Voltage	Vs	2.2	32	V
Common Mode Input Voltage	V _{CM}	(V-) - 0.1	(V+) + 0.1	V
Ambient Temperature	T _A	-40	125	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Table 5. ELECTRICAL CHARACTERISTICS AT 10 V SUPPLY Unless otherwise noted, values are referenced to T_A = 25°C, V+ = 10 V, V- = 0 V, V_{CM} = V+/2, and P_L > 1 M Ω to V+/2. **Boldface** limits apply from T_A = -40°C to 125°C. (Notes 8, 9)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Units
SUPPLY CHARACTERISTICS				•		•
Quiescent Supply Current	No load	I _S		1.30	1.5	mA
					1.7	
Power Supply Rejection Ratio	V _S = 2.7 V to 30 V	PSRR		113		dB
		Ī	70			
INPUT CHARACTERISTICS						
Input Offset Voltage		V _{OS}		0.2	6	mV
					6	
Input Offset Voltage Drift		ΔV/ΔΤ		1		μV/°C
Input Bias Current	V _{CM} = 0 V	I _{IB}		50	200	nA
					200	-
	V _{CM} = 10 V			50	200	
					200	
Input Offset Current	V _{CM} = 0 V	I _{OS}		2	70	nA
					80	
	V _{CM} = 10 V			2	70	
					80	
Input Resistance		R _{IN}		95		MΩ
Input Capacitance		C _{IN}		3		pF
Common Mode Rejection Ratio	V _{CM} = V- to V+	CMRR	73	84		dB
OUTPUT CHARACTERISTICS						
High-level output voltage	I _L = 10 mA	V _{OH}	9.65	9.80		V
Low-Level Output Voltage	I _L = 10 mA	V _{OL}		176	300	mV
Output Current Capability	Sourcing current	I _{OUT}		12		mA
	Sinking current			20		
DYNAMIC PERFORMANCE						
Open Loop Voltage Gain	$R_L = 10 \text{ k}\Omega$	A _{VOL}	83	107		dB
Gain-Bandwidth Product	$R_L = 10 \text{ k}\Omega$	GBWP		8.5		MHz
Gain Margin	R _L = 10 kΩ	A _M		5.5		dB
Phase Margin	$R_L = 10 \text{ k}\Omega$	Ψм		65		0
Slew Rate	R _L = 10 kΩ	SR		2.8		V/μs
Total Harmonic Distortion Plus Noise	$f_{IN} = 1 \text{ kHz}, A_V = 2, R_L = 2 \text{ k}\Omega$	THD+n		0.0015		%
NOISE PERFORMANCE		-		-		
Voltage Noise Density	f = 1 kHz	e _N		45		nV/√Hz

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.
 Performance guaranteed over the indicated operating temperature range by design and/or characterization tested at T_J = T_A = 25°C.

Table 6. ELECTRICAL CHARACTERISTICS AT 5 V SUPPLY Unless otherwise noted, values are referenced to $T_A = 25^{\circ}C$, $V_{+} = 5 \text{ V}$, $V_{-} = 0 \text{ V}$, $V_{CM} = V_{+}/2$, and $R_L \ge 1 \text{ M}\Omega$ to $V_{+}/2$. **Boldface** limits apply from $T_A = -40^{\circ}C$ to $125^{\circ}C$, unless otherwise noted. (Notes 10, 11)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Units
SUPPLY CHARACTERISTICS						
Quiescent Supply Current	No load	I _S		1.25		mA
Power Supply Rejection Ratio	V _S = 2.7 V to 30 V	PSRR		113		dB
			70			
INPUT CHARACTERISTICS						
Input Offset Voltage		V _{OS}		0.2	6	mV
		l I			6	
Input Offset Voltage Drift		ΔV/ΔΤ		1		μV/°C
Input Bias Current	V _{CM} = 0 V	I _{IB}		55		nA
	V _{CM} = 5 V			55		
Input Offset Current	V _{CM} = 0 V	los		2		nA
	V _{CM} = 5 V			2		
Input Resistance		R _{IN}		45		$M\Omega$
Input Capacitance		C _{IN}		3		pF
Common Mode Rejection Ratio	V _{CM} = V- to V+	CMRR	68	90		dB
OUTPUT CHARACTERISTICS	•	-		-		
High-level Output Voltage	I _L = 5 mA	V _{OH}	4.75	4.83		V
Low-Level Output Voltage	I _L = 5 mA	V _{OL}		130	200	mV
Output Current Capability	Sourcing current	I _{OUT}		12		mA
	Sinking current			20		
DYNAMIC PERFORMANCE						
Open Loop Voltage Gain	R _L = 10 kΩ	A_{VOL}	83	100		dB
Gain-Bandwidth Product	R _L = 10 kΩ	GBWP		8.5		MHz
Gain Margin	R _L = 10 kΩ	A _M		5.5		dB
Phase Margin	R _L = 10 kΩ	Ψм		65		٥
Slew Rate	R _L = 10 kΩ	SR		2.7		V/μs
Total Harmonic Distortion Plus Noise	$f_{IN} = 1 \text{ kHz}, A_V = 2, R_L = 2 \text{ k}\Omega$	THD+n		0.002		%
NOISE PERFORMANCE	•	•		-		
Voltage Noise Density	f = 1kHz	e _N		45		nV/√Hz

^{10.} Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.

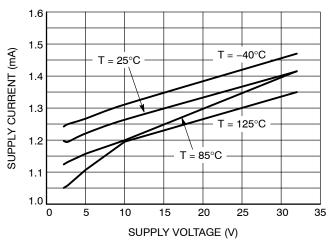
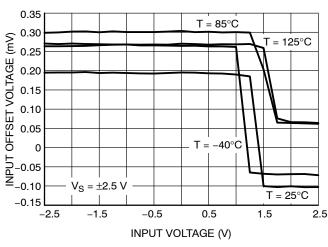

^{11.} Performance guaranteed over the indicated operating temperature range by design and/or characterization tested at $T_J = T_A = 25$ °C.

Table 7. ELECTRICAL CHARACTERISTICS AT 2.7 V SUPPLY Unless otherwise noted, values are referenced to $T_A = 25^{\circ}C$, $V_{+} = 2.7 \text{ V}$, $V_{-} = 0 \text{ V}$, $V_{CM} = V_{+}/2$, and $R_L \ge 1 \text{ M}\Omega$ to $V_{+}/2$. **Boldface** limits apply from $T_A = -40^{\circ}C$ to $125^{\circ}C$, unless otherwise noted. (Notes 12, 13)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Units
SUPPLY CHARACTERISTICS						
Quiescent Supply Current	No load	Is		1.25		mA
Power Supply Rejection Ratio	V _S = 2.7 V to 30 V	PSRR	70	113		dB
INPUT CHARACTERISTICS						
Input Offset Voltage		V _{OS}		0.2	6	mV
					6	
Input Offset Voltage Drift		ΔV/ΔΤ		1		μV/°C
Input Bias Current	V _{CM} = 0 V	I _{IB}		45		nA
	V _{CM} = 2.7 V			45		
Input Offset Current	V _{CM} = 0 V	I _{OS}		2		nA
	V _{CM} = 2.7 V			2		
Input Resistance		R _{IN}		90		MΩ
Input Capacitance		C _{IN}		3		pF
Common Mode Rejection Ratio	V _{CM} = V- to V+	CMRR	58	96		dB
OUTPUT CHARACTERISTICS						
High-Level Output Voltage	I _L = 2.7 mA	V _{OH}	2.50	2.60		V
Low-Level Output Voltage	I _L = 2.7 mA	V _{OL}		100	130	mV
Output Current Capability	Sourcing current	I _{OUT}		12		mA
	Sinking current			20		
DYNAMIC PERFORMANCE						
Open Loop Voltage Gain	R _L = 10 kΩ	A _{VOL}	73	114		dB
Gain-Bandwidth Product	R _L = 10 kΩ	GBWP		8.5		MHz
Gain Margin	R _L = 10 kΩ	A _M		6		dB
Phase Margin	$R_L = 10 \text{ k}\Omega$	Ψм		60		0
Slew Rate	R _L = 10 kΩ	SR		2.6		V/µs
Total Harmonic Distortion Plus Noise	$f_{IN} = 1 \text{ kHz}, A_V = 2, R_L = 2 \text{ k}\Omega$	THD+n		0.05		%
NOISE PERFORMANCE	-			•		-
Voltage Noise Density	f = 1kHz	e _N		45		nV/√Hz

^{12.} Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.


^{13.} Performance guaranteed over the indicated operating temperature range by design and/or characterization tested at $T_J = T_A = 25^{\circ}C$.

0.35 T = 85°C 0.30 INPUT OFFSET VOLTAGE (mV) 0.25 T = 125°C 0.20 0.15 0.10 0.05 $T = -40^{\circ}C$ -0.05 -0.10 $V_S = \pm 1.35 \text{ V}$ $T = 25^{\circ}C$ -0.15 -1.35 -0.35 0.15 0.65 1.15 -0.85INPUT VOLTAGE (V)

Figure 1. Quiescent Current Per Channel vs. Supply Voltage

Figure 2. Input Offset Voltage vs. Common Mode Input Voltage

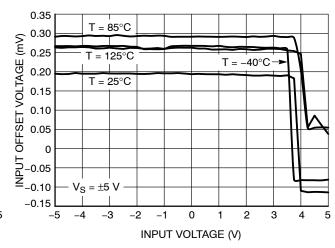
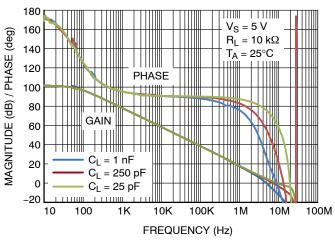



Figure 3. Input Offset Voltage vs. Common Mode Input Voltage

Figure 4. Input Offset Voltage vs. Common Mode Voltage

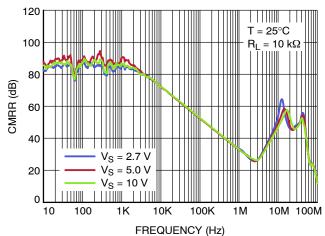


Figure 5. Gain and Phase vs. Frequency

Figure 6. CMRR vs. Frequency

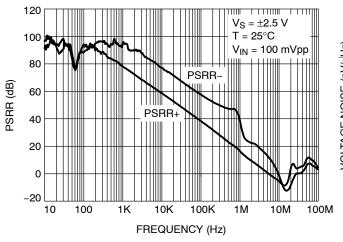


Figure 7. PSRR vs. Frequency

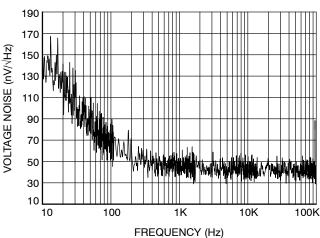


Figure 8. Input Voltage Noise vs. Frequency

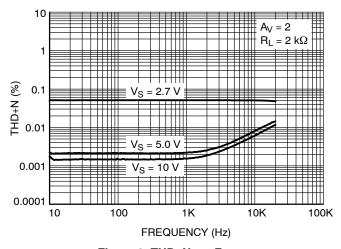


Figure 9. THD+N vs. Frequency

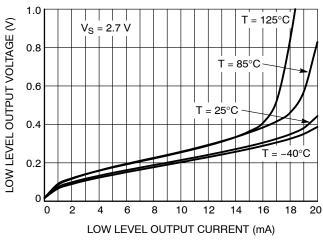


Figure 10. Low Level Output Voltage vs.
Output Current @ Vs = 2.7 V

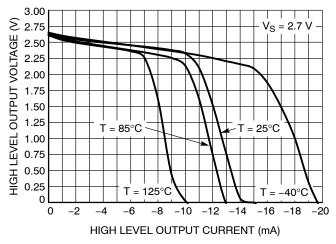


Figure 11. High Level Output Voltage vs.
Output Current @ Vs = 2.7 V

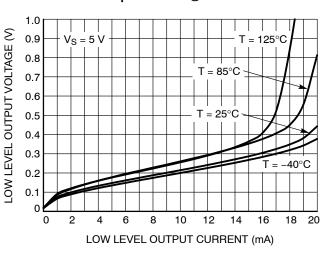
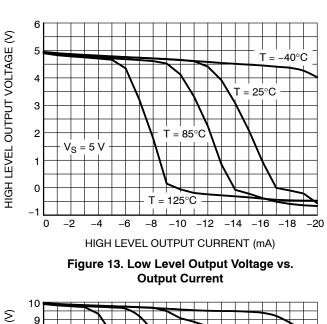
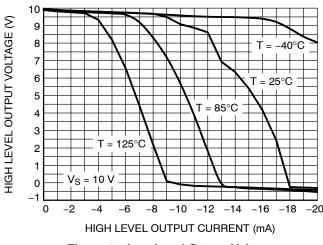




Figure 12. Low Level Output Voltage vs.
Output Current @ Vs = 5 V

1.0 T = 125°C LOW LEVEL OUTPUT VOLTAGE (V) 0.9 $V_{S} = 10 \text{ V}$ 0.8 T = 85°C 0.7 0.6 $T = 25^{\circ}C$ 0.5 0.4 0.3 0.2 0.1 6 4 8 10 12 16 18 20 LOW LEVEL OUTPUT CURRENT (mA)

Figure 14. High Level Output Voltage vs.
Output Current

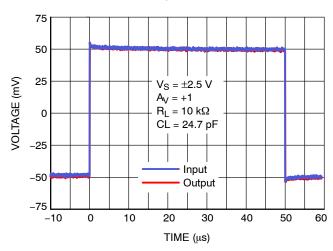
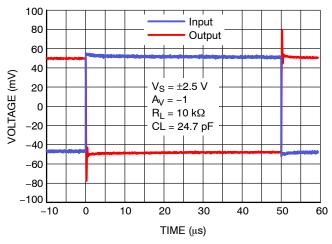



Figure 15. Low Level Output Voltage vs.
Output Current

Figure 16. Non-inverting Small Signal Transient Response

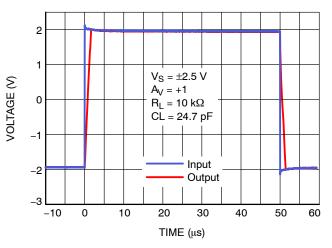
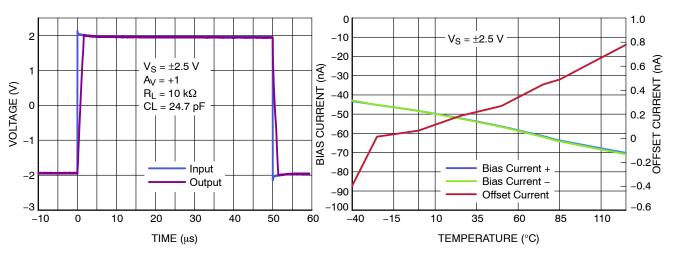


Figure 17. Inverting Small Signal Transient Response

Figure 18. Non-Inverting Large Signal Transient Response



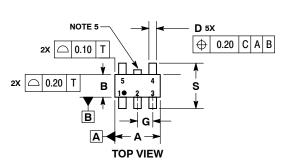
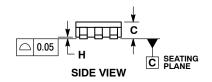
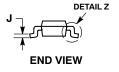
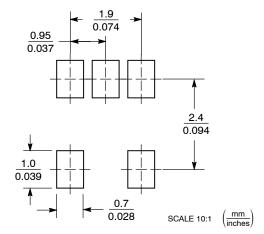

Figure 19. Inverting Large Signal Transient Response

Figure 20. Input Bias and Offset Current vs. Temperature




TSOP-5 **CASE 483 ISSUE N**

DATE 12 AUG 2020



NOTES:

- DIMENSIONING AND TOLERANCING PER ASME
- CONTROLLING DIMENSION: MILLIMETERS.
 MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH
 THICKNESS. MINIMUM LEAD THICKNESS IS THE
 MINIMUM THICKNESS OF BASE MATERIAL.
- DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSION A. OPTIONAL CONSTRUCTION: AN ADDITIONAL
- TRIMMED LEAD IS ALLOWED IN THIS LOCATION. TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2 FROM BODY.

	MILLIMETERS				
DIM	MIN	MAX			
Α	2.85	3.15			
В	1.35	1.65			
C	0.90	1.10			
D	0.25	0.50			
G	0.95	BSC			
Н	0.01	0.10			
J	0.10	0.26			
K	0.20	0.60			
М	0 °	10 °			
S	2.50	3.00			

SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code XXX = Specific Device Code

= Assembly Location = Date Code

= Year = Pb-Free Package

= Work Week W

= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98ARB18753C	Electronic versions are uncontrolled except when accessed directly from the Document Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TSOP-5		PAGE 1 OF 1	

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales